23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation and analysis of heat transfer and thin film flow of Fe3O4 and Al2O3 nanoparticles dispersed in H2O over vertical stretching sheet

ORCID Icon, ORCID Icon &
Received 24 Apr 2023, Accepted 08 Dec 2023, Published online: 21 Dec 2023

References

  • C. Wang, “Analytic solutions for a liquid film on an unsteady stretching surface,” Heat Mass Transf., vol. 42, no. 8, pp. 759–766, Jun. 2006. DOI: 10.1007/S00231-005-0027-0/FIGURES/4.
  • M. Fakour, A. Rahbari, E. Khodabandeh, and D. D. Ganji, “Nanofluid thin film flow and heat transfer over an unsteady stretching elastic sheet by LSM,” J. Mech. Sci. Technol., vol. 32, no. 1, pp. 177–183, 2018. DOI: 10.1007/s12206-017-1219-5.
  • M. A. Sadiq, “Heat transfer of a nanoliquid thin film over a stretching sheet with surface temperature and internal heat generation,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2075–2083, Apr. 2020. DOI: 10.1007/s10973-020-09614-x.
  • M. K. Prasad, S. H. Naveenkumar, C. S. K. Raju, and S. M. Upadhya, “Nonlinear thermal convection on unsteady thin film flow with variable properties,” J. Phys. Conf. Ser., vol. 1427, no. 1, pp. 012016, 2020. DOI: 10.1088/1742-6596/1427/1/012016.
  • K. Iqbal, J. Ahmed, M. Khan, L. Ahmad, and M. Alghamdi, “Magnetohydrodynamic thin film deposition of Carreau nanofluid over an unsteady stretching surface,” Appl. Phys. A, vol. 126, no. 2, pp. 1262, Jan. 2020. DOI: 10.1007/s00339-019-3204-6.
  • K. Anantha Kumar, V. Sugunamma, and N. Sandeep, “Physical aspects on unsteady MHD-free convective stagnation point flow of micropolar fluid over a stretching surface,” Heat Transf. Asian Res., vol. 48, no. 8, pp. 3968–3985, Dec. 2019. DOI: 10.1002/htj.21577.
  • K. Anantha Kumar, N. Sandeep, V. Sugunamma, and I. L. Animasaun, “Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 2145–2153, Feb. 2020. DOI: 10.1007/s10973-019-08628-4.
  • A. Ullah, E. O. Alzahrani, Z. Shah, M. Ayaz, and S. Islam, “Nanofluids thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with Brownian motion and thermophoresis effects,” Coatings, vol. 9, no. 1, pp. 21, 2018. DOI: 10.3390/coatings9010021.
  • S. Rehman, M. Idrees, R. A. Shah, and Z. Khan, “Suction/injection effects on an unsteady MHD Casson thin film flow with slip and uniform thickness over a stretching sheet along variable flow properties,” Bound. Value Probl., vol. 2019, no. 1, pp. 1–24, 2019. DOI: 10.1186/s13661-019-1133-0.
  • A. S. Khan, Y. Nie, and Z. Shah, “Impact of thermal radiation on magnetohydrodynamic unsteady thin film flow of sisko fluid over a stretching surface,” Processes, vol. 7, no. 6, pp. 369, 2019. DOI: 10.3390/pr7060369.
  • J. Tawade, M. S. Abel, P. G. Metri, and A. Koti, “Thin film flow and heat transfer over an unsteady stretching sheet with thermal radiation, internal heating in presence of external magnetic field,” Int. J. Adv. Appl. Math. Mech., vol. 3, no. 4, pp. 29–40, 2016.
  • M. M. Khader, “Numerical study of the nanofluid thin film flow past an unsteady stretching sheet with fractional derivatives using the spectral collocation Chebyshev approximation,” Int. J. Mod. Phys. C, vol. 32, no. 02, pp. 2150026, Feb. 2021. DOI: 10.1142/S0129183121500261.
  • E. Alali and A. M. Megahed, “MHD dissipative Casson nanofluid liquid film flow due to an unsteady stretching sheet with radiation influence and slip velocity phenomenon,” Nanotechnol. Rev., vol. 11, no. 1, pp. 463–472, Jan. 2022. DOI: 10.1515/NTREV-2022-0031/MACHINEREADABLECITATION/RIS.
  • F. Ahmad et al., “Case studies in thermal engineering MHD thin film flow of the Oldroyd-B fluid together with bioconvection and activation energy,” Case Stud. Therm. Eng., vol. 27, pp. 101218, Jul. 2021. DOI: 10.1016/j.csite.2021.101218.
  • M. Turkyilmazoglu, “Nanofluid flow and heat transfer due to a rotating disk,” Comput. Fluids, vol. 94, pp. 139–146, 2014. DOI: 10.1016/j.compfluid.2014.02.009.
  • E. V. Timofeeva, J. L. Routbort, and D. Singh, “Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration,” Cit. J. Appl. Phys., vol. 106, no. 1, pp. 66102, 2009. DOI: 10.1063/1.3155999.
  • Y. Jiang, X. Zhou, and Y. Wang, “Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble,” Microgravity Sci. Technol., vol. 32, no. 2, pp. 167–177, 2020. DOI: 10.1007/s12217-019-09757-z.
  • Y. Lin, B. Li, L. Zheng, and G. Chen, “Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature,” Powder Technol., vol. 301, pp. 379–386, 2016. DOI: 10.1016/j.powtec.2016.06.029.
  • S. Saranya and Q. M. Al-Mdallal, “Computational study on nanoparticle shape effects of Al2O3-silicon oil nanofluid flow over a radially stretching rotating disk,” Case Stud. Therm. Eng., vol. 25, pp. 100943, Jan. 2021. DOI: 10.1016/j.csite.2021.100943.
  • E. Azhar, E. N. Maraj, and Z. Iqbal, “Mechanistic investigation for the axisymmetric transport of nanocomposite molybdenum disulfide-silicon dioxide in ethylene glycol and sphericity assessment of nanoscale particles,” Eur. Phys. J. Plus, vol. 133, no. 3, pp. 130. 2018. DOI: 10.1140/epjp/i2018-11958-3.
  • N. A. Adnan, R. Kandasamy, and R. Mohammad, “Nanoparticle shape and thermal radiation on Marangoni water, ethylene glycol and engine oil based Cu, Al2O3 and SWCNTs,” J..Mater. Sci. Eng., vol. 06, no. 04, pp. 1–17. 2017. DOI: 10.4172/2169-0022.1000365.
  • S. Shaiq, E. N. Maraj, and A. Shahzad, “An unsteady instigated induced magnetic field’s influence on the axisymmetric stagnation point flow of various shaped copper and silver nanomaterials submerged in ethylene glycol over an unsteady radial stretching sheet,” Numer. Heat Transf. A Appl., pp. 1–23, 2023. DOI: 10.1080/10407782.2023.2193351.
  • U. Hayat, R. Ali, S. Shaiq, and A. Shahzad, “A numerical study on thin film flow and heat transfer enhancement for copper nanoparticles dispersed in ethylene glycol,” Rev. Adv. Mater. Sci., vol. 62, no. 1, Jan. 2023. DOI: 10.1515/rams-2022-0320.
  • J. Hasnain and N. Abid, “Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet,” Numer. Heat Transf. A Appl., vol. 83, no. 12, pp. 1365–1376, 2022. DOI: 10.1080/10407782.2022.2104582.
  • M. Sohail and R. Naz, “Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder,” Phys. A Stat. Mech. Appl., vol. 549, pp. 124088, Jul. 2020. DOI: 10.1016/j.physa.2019.124088.
  • M. F. Najafabadi, H. TalebiRostami, K. Hosseinzadeh, and D. D. Ganji, “Investigation of nanofluid flow in a vertical channel considering polynomial boundary conditions by Akbari-Ganji’s method,” Theor. Appl. Mech. Lett., vol. 12, no. 4, pp. 100356, 2022. DOI: 10.1016/j.taml.2022.100356.
  • I. Mehdi, Z. Abbas, and J. Hasnain, “MHD flow and heat transfer between two rotating disks under the effects of nanomaterials (MoS2) and thermal radiation,” Case Stud. Therm. Eng., vol. 33, pp. 101968, May 2022. DOI: 10.1016/j.csite.2022.101968.
  • U. Hayat and A. Shahzad, “Analysis of heat transfer and thin film flow of Au − Np over an unsteady radial stretching sheet,” Numer. Heat Transf. A Appl., vol. 84, no. 11, pp. 1338–1351, Mar. 2023. DOI: 10.1080/10407782.2023.2175746.
  • A. Shahzad, F. Liaqat, Z. Ellahi, M. Sohail, M. Ayub and M. R. Ali, “Thin film flow and heat transfer of Cu-nanofluids with slip and convective boundary condition over a stretching sheet,” Sci. Rep., vol. 12, no. 1, pp. 14254, 2022. DOI: 10.1038/s41598-022-18049-3.
  • J. Singh, A. M. Alshehri Sushila, D. Kumar, “Computational analysis of fractional Liénard’s equation with exponential memory,” J. Comput. Nonlinear Dyn., vol. 18, no. 4, pp. 041004, 2023, DOI: 10.1115/1.4056858.
  • A. Neemawat and Sushila  , “Non-similarity solutions of MHD boundary layer flow,” in Advances in Mathematical Modelling, Applied Analysis and Computation, vol. 666. Cham, Switzerland: Springer, pp. 508–521, 2023. DOI: 10.1007/978-3-031-29959-9_33.
  • H. Konwar, Bendangwapang  , and T. Jamir “Mixed convection MHD boundary layer flow, heat, and mass transfer past an exponential stretching sheet in porous medium with temperature-dependent fluid properties,” Numer. Heat Transf. A Appl., vol. 83, no. 12, pp. 1346–1364, 2022, DOI: 10.1080/10407782.2022.2104581.
  • M. Faujdar and M. Bafna, “Preparation and characterization of zinc-copper oxide doped PMMA films,” IJSRP, vol. 10, no. 4, pp. p10092, 2020. DOI: 10.29322/IJSRP.10.04.2020.p10092.
  • N. Garg, M. Bafna, and  . Sushila, “Investigation of structural, optical, electrical and mechanical properties of di-methyl-tin-di-chloride PMMA composite films,” Mater. Today Proc., vol. 30, no. 1, pp. 78–83, 2020. DOI: 10.1016/j.matpr.2020.04.587.
  • R. Kumar, R. Mehta, M. Tripti, and Sushila,  “MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet fixed in porous medium with effect of thermal radiation, Joule heating and heat source/sink,” J. Comput. Anal. Appl., vol. 31, no. 1, pp. 294–316, 2023. 2023.
  • Y. M. Chu, S. Bashir, M. Ramzan and M. Y. Malik, “Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects,” Math. Methods App. Sci., vol. 46, no. 10, pp. 11568–11582, Jul. 2023. DOI: 10.1002/mma.8234.
  • G. Khan et al., “Heat transfer in MHD thin film flow with concentration using lie point symmetry approach,” Case Stud. Therm. Eng., vol. 49, pp. 103238, Sep. 2023. DOI: 10.1016/j.csite.2023.103238.
  • M. A. Kumar and Y. D. Reddy, “Thermal radiation and chemical reaction influence on MHD boundary layer flow of a Maxwell fluid over a stretching sheet containing nanoparticles,” J. Therm. Anal. Calorim, vol. 148, no. 13, pp. 6301–6309, Jul. 2023. DOI: 10.1007/S10973-023-12097-1/METRICS.
  • M. Sohail, U. Nazir, Y. M. Chu, H. Alrabaiah, W. Al-Kouz, and P. Thounthong, “Computational exploration for radiative flow of Sutterby nanofluid with variable temperature-dependent thermal conductivity and diffusion coefficient,” Open Phys., vol. 18, no. 1, pp. 1073–1083, 2020. DOI: 10.1515/PHYS-2020-0216/MACHINEREADABLECITATION/RIS.
  • E. N. Maraj, S. Shaiq, and Z. Iqbal, “Assessment of hexahedron and lamina shaped graphene oxide nanoparticles suspended in ethylene and propylene glycol influenced by internal heat generation and thermal deposition,” J. Mol. Liq., vol. 262, pp. 275–284, Jul. 2018. DOI: 10.1016/j.molliq.2018.04.072.
  • H. T. Alkasasbeh, M. Z. Swalmeh, A. Hussanan and M. Mamat, “Effects of mixed convection on methanol and kerosene oil based micropolar nanofluid containing oxide nanoparticles,” CFD Lett., vol. 11, no. 1, pp. 55–68, 2019.
  • S. Das, R. N. Jana, and O. D. Makinde, “MHD boundary layer slip flow and heat transfer of nanofluid past a vertical stretching sheet with non-uniform heat generation/absorption,” Int. J. Nanosci, vol. 13, no. 03, pp. 1450019, 2014. DOI: 10.1142/S0219581X14500197.
  • S. Bibi, Z. Elahi, and A. Shahzad, “Impacts of different shapes of nanoparticles on SiO 2nanofluid flow and heat transfer in a liquid film over a stretching sheet,” Phys. Scr., vol. 95, no. 11, pp. 115217, 2020. DOI: 10.1088/1402-4896/abbc9d.
  • L. F. Shampine and M. W. Reichelt, “Solving boundary value problems ordinary differential equations MATLAB bvp4c,” 2000. Available: http://www.mathworks.com/bvp_tutorial.
  • M. S. Abel, N. Mahesha, and J. Tawade, “Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field,” Appl. Math. Model, vol. 33, no. 8, pp. 3430–3441, Aug. 2009. DOI: 10.1016/j.apm.2008.11.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.