49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magneto-thermo-gravitational Rayleigh–Bénard convection of an electro-conductive micropolar fluid in a square enclosure: Finite volume computation

, ORCID Icon, , , &
Received 12 Sep 2023, Accepted 19 Dec 2023, Published online: 02 Jan 2024

References

  • J. S. Shang, “Recent research in magneto-aerodynamics,” Progress Aerospace Sci., vol. 37, no. 1, pp. 1–20, 2001. DOI: 10.1016/S0376-0421(00)00015-4.
  • X. Zengyu, P. Chuanjie, J. Weihong, W. Wenhao, L. Wenzhong, and Q. Jiapu, “MHD effects caused by insulator coating imperfections,” Fusion Eng. Des., vol. 39–40, no. 40, pp. 793–798, 1998. DOI: 10.1016/S0920-3796(98)00303-2.
  • O. Anwar Bég, T. A. Bég, S. R. Munjam, and S. Jangili, “Homotopy and Adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct,” Int. J. Hydrogen Energy, vol. 46, no. 34, pp. 17677–17696, 2021. DOI: 10.1016/j.ijhydene.2021.02.189.
  • O. Anwar Bég et al., “Numerical study of magneto-convective heat and mass transfer from inclined surface with Soret diffusion and heat generation effects: a model for ocean magnetohydrodynamic energy generator fluid dynamics,” Chin. J. Phys., vol. 60, pp. 167–179, 2019. DOI: 10.1016/j.cjph.2019.05.002.
  • V. K. Vlasyuk and V. I. Sharamkin, “Effect of vertical magnetic field on heat and mass transfer in a parabolic liquid metal bath,” Magnetohydrodynamics, vol. 23, pp. 211–16, 1987.
  • P. Davidson, “Magnetohydrodynamics in materials processing,” Annu. Rev. Fluid Mech., vol. 31, no. 1, pp. 273–300, 1999. DOI: 10.1146/annurev.fluid.31.1.273.
  • M. Lee and Y.-J. Kim, “Effect of non-uniform magnetic fields on the characteristics of ferrofluid flow in a square enclosure,” J. Mag. Mag. Mater., vol. 506, pp. 166697, 2020. DOI: 10.1016/j.jmmm.2020.166697.
  • O. Anwar Bég, K. Venkatadri, V. R. Prasad, T. A. Bég, A. Kadir, and H. J. Leonard, “Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects,” Mater. Sci. Eng. B: Adv. Funct. Solid-State Mater., vol. 261, pp. 114722, 2020.
  • C. Jiang, W. Feng, H. Zhong, J. Zeng, and Q. Zhu, “Effects of a magnetic quadrupole field on thermomagnetic convection of air in a porous square enclosure,” J. Mag. Mag. Mater., vol. 357, pp. 53–60, 2014. DOI: 10.1016/j.jmmm.2014.01.027.
  • O. Anwar Bég, K. Venkatadri, V. R. Prasad, T. A. Bég, and H. J. Leonard, “MAC computation of magnetohydrodynamic convection flow in a non-Darcian porous enclosure saturated with electrically conducting Helium,” Proc. IMechE-Part C – J. Mech. Eng. Sci., vol. 236, no. 5, pp. 2203-2223, 2022. DOI: 10.1177/09544062211003624.
  • P. X. Yu, J. X. Qiu, Q. Qin, and Z. F. Tian, “Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field,” Int. J. Heat Mass Transf., vol. 67, pp. 1131–1144, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.087.
  • K. Venkatadri, O. A. Bég, and S. Kuharat, “Magneto-convective flow through a porous enclosure with Hall current and thermal radiation effects: numerical study,” Eur. Phys. J. Spec. Top., vol. 231, no. 13–14, pp. 2555–2568, 2022. DOI: 10.1140/epjs/s11734-022-00592-9 (14 pages)
  • V. Costa, A. Sousa, and P. Vasseur, “Natural convection in square enclosures filled with fluid-saturated porous media under the influence of the magnetic field induced by two parallel vertical electric currents,” Int. J. Heat Mass Transf., vol. 55, no. 23–24, pp. 7321–7329, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.07.063.
  • L. B. Wang and N. I. Wakayama, “Control of natural convection in non- and low-conducting diamagnetic fluids in a cubical enclosure using inhomogeneous magnetic fields with different directions,” Chem. Eng. Sci., vol. 57, no. 11, pp. 1867–1876, 2002. DOI: 10.1016/S0009-2509(02)00090-8.
  • K. Venkatadri and O. A. Bég, “Numerical analysis of thermo-magnetic non‑Darcian natural convective flow in a square cavity partially filled with a porous medium using a lattice Boltzmann method (LBM),” Waves Random Complex Media, pp. 1–28, 2022. DOI: 10.1080/17455030.2022.2157516.
  • T. Tagawa, A. Ujihara, and H. Ozoe, “Numerical computation for Rayleigh–Benard convection of water in a magnetic field,” Int. J. Heat Mass Transf., vol. 46, no. 21, pp. 4097–4104, 2003. DOI: 10.1016/S0017-9310(03)00223-0.
  • B. Bai, A. Yabe, J. Qi, and N. I. Wakayama, “Quantitative analysis of air convection caused by magnetic-fluid coupling,” AIAA J., vol. 37, no. 12, pp. 1538–1543, 1999. DOI: 10.2514/2.652.
  • K. Venkatadri, H. F. Öztop, V. R. Prasad, S. Parthiban, and O. A. Bég, “RSM-based sensitivity analysis of hybrid nanofluid MHD flow in an enclosure filled with non-Darcy porous medium using the Lattice Boltzmann Method,” Numer. Heat Transf. – A (USA), pp. 1–25, 2023. DOI: 10.1080/10407782.2023.2193708.
  • Y. Collet et al., “Effective simulation of the effect of a transverse magnetic field (TMF) in Czochralski Silicon growth,” J. Crystal Growth, vol. 360, pp. 18–24, 2012. DOI: 10.1016/j.jcrysgro.2011.11.075.
  • S. Mao, X. Wang, D. Sun, and J. Wang,., “Numerical modeling of dendrite growth in a steady magnetic field using the two relaxation times lattice Boltzmann-phase field model,” Comput. Mater. Sci., vol. 204, pp. 111149, 2022. DOI: 10.1016/j.commatsci.2021.111149.
  • H. S. Takhar, R. Bhargava, S. Rawat, T. A. Bég, O. Anwar Bég, and T. K. Hung, “Biomagnetic hydrodynamics in a 2-dimensional non-Darcian porous medium: finite element study,” J. Theoretical Appl. Mech., vol. 37, no. 2, pp. 59–76, 2007.
  • R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications. Oxford, USA: Butterworth-Heinemann, 1999.
  • J. D. H. Kelder, K. J. Ptasinski, and P. Kerkhof, “Power-law foods in continuous coiled sterilisers,” Chem. Eng. Sci., vol. 57, no. 21, pp. 4605–4615, 2002. DOI: 10.1016/S0009-2509(02)00321-4.
  • T. Sarala Devi, C. V. Lakshmi, K. Venkatadri, V. R. Prasad, O. Anwar Bég, and M. S. Reddy, “Simulation of natural convection flow of a Casson fluid in a square enclosure utilizing a MAC algorithm,” Heat Trans., vol. 49, no. 4, pp. 1769–1787, 2020. DOI: 10.1002/htj.21690. (pages)
  • D. Yadav and M. Maqhusi, “Influence of temperature dependent viscosity and internal heating on the onset of convection in porous enclosures saturated with viscoelastic fluid,” Asia-Pacific J. Chem. Eng., vol. 15, no. 6, pp. e2514, 2020. DOI: 10.1002/apj.2514.
  • W. Al-Kouz et al., “Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method,” European Phys. J. Plus, vol. 136, no. 1184, pp. 23, 2021. DOI: 10.1140/epjp/s13360-021-02192-3.
  • D. Yadav et al., “Chemical reaction and internal heating effects on the double diffusive convection in porous membrane enclosures soaked with Maxwell fluid,” Membranes (Basel), vol. 12, no. 3, pp. 338, 2022. DOI: 10.3390/membranes12030338.
  • A. C. Eringen, “Theory of micropolar fluids,” Indiana Univ. Math. J., vol. 16, no. 1, pp. 1–18, 1966. DOI: 10.1512/iumj.1967.16.16001.
  • O. Anwar Bég, S. K. Ghosh, and T. A. Bég, Applied Magnetofluid Dynamics: Theory and Computation. Lambert, Germany, 2011, pp. 442.
  • T. Ariman, M. A. Turk, and N. D. Sylvester, “Applications of microcontinuum fluid mechanics,” Int. J. Eng. Sci., vol. 12, no. 4, pp. 273–293, 1974. DOI: 10.1016/0020-7225(74)90059-7.
  • T. Ariman, M. A. Turk, and N. D. Sylvester, “Microcontinuum fluid mechanics-A review,” Int. J. Eng. Sci., vol. 11, no. 8, pp. 905–930, 1973. DOI: 10.1016/0020-7225(73)90038-4.
  • A. C. Eringen, Microcontinnuum Field Theories II: Fluent Media. New York, USA: Springer, 2001.
  • N. S. Gibanov, M. A. Sheremet, and I. Pop, “Natural convection of micropolar fluid in a wavy differentially heated cavity,” J. Mol. Liq., vol. 221, pp. 518–525, 2016. DOI: 10.1016/j.molliq.2016.06.033.
  • M. Nazeer, N. Ali, T. Javed, and M. Razzaq, “Finite element simulations for energy transfer in a lid-driven porous square container filled with micropolar fluid: impact of thermal boundary conditions and Peclet number,” Int. J. Hydrogen Energy., vol. 44, no. 14, pp. 7656–7666, 2019. DOI: 10.1016/j.ijhydene.2019.01.236.
  • M. Saleem, S. Asghar, and M. A. Hossain, “Natural convection flow of micropolar fluid in a rectangular cavity heated from below with cold sidewalls,” Math. Comput. Model, vol. 54, no. 1–2, pp. 508–518, 2011. DOI: 10.1016/j.mcm.2011.02.041.
  • M. Zadravec, M. Hriberšek, and L. Škerget, “Natural convection of micropolar fluid in an enclosure with boundary element method,” Eng. Anal. Bound. Elem., vol. 33, no. 4, pp. 485–492, 2009. DOI: 10.1016/j.enganabound.2008.08.013.
  • R. Bhargava, S. Sharma, P. Bhargava, O. A. Bég, and A. Kadir, “Finite element simulation of nonlinear convective heat and mass transfer in a micropolar fluid-filled enclosure with Rayleigh number effects,” Int. J. Appl. Comput. Math., vol. 3, no. 2, pp. 1347–1379, 2017. DOI: 10.1007/s40819-016-0180-9.
  • A. C. Eringen and G. A. Maugin, Electrodynamics of Continua II: Fluids and Complex Media, New York, USA: Springer, 1990.
  • J. Chen, J. D. Lee, and C. Liang, “Constitutive equations of micropolar electromagnetic fluids,” J. Non-Newton. Fluid Mech., vol. 166, no. 14–15, pp. 867–874, 2011. DOI: 10.1016/j.jnnfm.2011.05.004.
  • M. A. Ezzat and H. M. Youssef, “Stokes’s first problem for an electro-conducting micropolar fluid with thermoelectric properties,” Can. J. Phys., vol. 88, no. 1, pp. 35–48, 2010. DOI: 10.1139/P09-100.
  • O. Anwar Bég et al., “Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with Hall and ion-slip current effects: numerical study,” JAE, vol. 65, no. 2, pp. 371–403, 2021. DOI: 10.3233/JAE-201508.
  • O. Anwar Bég, M. M. Rashidi, T. A. Bég, and M. Asadi, “Homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze film: a model for magneto-bio-rheological lubrication,” J. Mech. Med. Biol., vol. 12, no. 03, pp. 1250051, 2012. DOI: 10.1142/S0219519411004642.
  • S. Siddiqa, A. Faryad, N. Begum, M. A. Hossain, and R. S. R. Gorla, “Periodic magnetohydrodynamic natural convection flow of a micropolar fluid with radiation,” Int. J. Therm. Sci., vol. 111, pp. 215–222, 2017. DOI: 10.1016/j.ijthermalsci.2016.09.002.
  • J. Zueco, O. A. Bég, and H. S. Takhar, “Network numerical analysis of magneto-micropolar convection through a vertical circular non-Darcian porous medium conduit,” Comput. Mater. Sci., vol. 46, no. 4, pp. 1028–1037, 2009. DOI: 10.1016/j.commatsci.2009.05.018.
  • J. V. R. Murthy, K. S. Sai, and N. K. Bahali, “Steady flow of micropolar fluid in a rectangular channel under transverse magnetic field with suction,” AIP Adv., vol. 1, pp. 032123, 2011.
  • A. Borrelli, G. Giantesio, and M. C. Patria, “Magnetoconvection of a micropolar fluid in a vertical channel,” Int. J. Heat Mass Transf., vol. 80, pp. 614–625, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.031.
  • T. Javed and M. A. Siddiqui, “Energy transfer through mixed convection within square enclosure containing micropolar fluid with non-uniformly heated bottom wall under the MHD impact,” J. Mol. Liq., vol. 249, pp. 831–842, 2018. DOI: 10.1016/j.molliq.2017.11.124.
  • R. Bhargava, S. Sharma, O. A. Bég, and J. Zueco, “Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow,” Commun. Nonlinear Sci. Numerical Simulation J., vol. 15, no. 5, pp. 1210–1223, 2010. DOI: 10.1016/j.cnsns.2009.05.049.
  • K. Periyadurai, M. Muthtamilselvan, and D.-H. Doh, “Influence of inclined Lorentz force on micropolar fluids in a square cavity with uniform and nonuniform heated thin plate,” J. Mag. Mag. Mater., vol. 420, pp. 343–355, 2016. DOI: 10.1016/j.jmmm.2016.07.014.
  • O. Anwar Bég, R. Bhargava, S. Rawat, H. S. Takhar, and M. K. Halim, “Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium,” Meccanica, vol. 43, no. 4, pp. 391–410, 2008. DOI: 10.1007/s11012-007-9102-6.
  • A. Abraham, “Rayleigh-Benard convection in a micropolar ferromagnetic fluid,” Int. J. Eng. Sci., vol. 40, no. 4, pp. 449–460, 2020. DOI: 10.1016/S0020-7225(01)00046-5.
  • O. Anwar Bég, H. S. Takhar, R. Bhargava, S. Sharma, and T.-K. Hung, “Mathematical modeling of biomagnetic flow in a micropolar fluid-saturated Darcian porous medium,” Inter. J. Fluid Mech. Res., vol. 34, no. 5, pp. 403–424, 2007. DOI: 10.1615/InterJFluidMechRes.v34.i5.20.
  • T. J. Barth, “Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations, AGARD, Spec. Course Unstructured Grid Methods Advection Domin,” Flows, pp. 1–59, NASA, USA 1992.
  • Q. M. Huang, Y. X. Ren, and Q. Wang, High Order Finite Volume Schemes for Solving the Non-Conservative Convection Equations on the Unstructured Grids, vol. 88. US: Springer, 2021. DOI: 10.1007/s10915-021-01538-4.
  • H. Nishikawa, “The QUICK scheme is a third-order finite-volume scheme with point-valued numerical solutions,” Numerical Methods Fluids, vol. 93, no. 7, pp. 2311–2338, 2021. DOI: 10.1002/fld.4975.
  • M. R. Patel and J. U. Pandya, “A research study on unsteady state convection diffusion flow with adoption of the finite volume technique,” J. Appl. Math. Comput. Mech., vol. 20, no. 4, pp. 65–76, 2021. DOI: 10.17512/jamcm.2021.4.06.
  • S. Busto, M. Dumbser, S. Gavrilyuk, and K. Ivanova, “On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows,” J. Sci. Comput., vol. 88, no. 1, 2021. DOI: 10.1007/s10915-021-01521-z.
  • X. Cao and H. Huang, “An adaptive conservative finite volume method for Poisson-Nernst-Planck equations on a moving mesh,” CiCP, vol. 26, no. 2, pp. 389–412, 2019. DOI: 10.4208/cicp.OA-2018-0134.
  • L. J. Durlofsky, Y. Efendiev, and V. Ginting, “An adaptive local-global multiscale finite volume element method for two-phase flow simulations,” Adv. Water Resour., vol. 30, no. 3, pp. 576–588, 2007. DOI: 10.1016/j.advwatres.2006.04.002.
  • Y. Wang, C. Zhong, J. Cao, C. Zhuo, and S. Liu, “A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, Part II: extension towards turbulent flow simulation,” Comput. Math. Appl., vol. 79, no. 8, pp. 2133–2152, 2020. DOI: 10.1016/j.camwa.2019.10.014.
  • F. Liu, H. Wang, X. Meng, C. Tan, B. Chen, and X. Song,., “Effect of magnetic field orientation on suppressing porosity in steady-magnetic-field-assisted aluminium alloy deep-penetration laser welding,” J. Mater. Process. Technol., vol. 304, pp. 117569, 2022. DOI: 10.1016/j.jmatprotec.2022.117569.
  • X. Dong, L. He, X. Huang, and P. Li, “Coupling analysis of the electromagnetic transport of liquid aluminium alloy during casting,” J. Mater. Process. Technol., vol. 222, pp. 197–205, 2015. DOI: 10.1016/j.jmatprotec.2015.02.033.
  • S. C. Kakarantzas, I. E. Sarris, A. P. Grecos, and N. S. Vlachos, “Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature,” Int. J. Heat Mass Transf., vol. 52, no. 1–2, pp. 250–259, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.06.035.
  • T. S. Gregory, R. Cheng, G. Tang, L. Mao, and Z. T. H. Tse, “The magnetohydrodynamic effect and its associated material designs for biomedical applications: a state-of-the-art review,” Adv. Funct. Mater., vol. 26, no. 22, pp. 3942–3952, 2016. DOI: 10.1002/adfm.201504198.
  • P. Mayeli and G. J. Sheard, “Buoyancy-driven flows beyond the Boussinesq approximation: a brief review,” Int. Commun. Heat Mass Transf., vol. 125, pp. 105316, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105316.
  • N. Ouertatani, N. B. Cheikh, B. B. Beya, and T. Lili, “Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure,” Comptes Rendus Mécanique, vol. 336, no. 5, pp. 464–470, 2008. DOI: 10.1016/j.crme.2008.02.004.
  • V. Bashtovoy and B. M. Berkovsky, Magnetic Fluids and Applications Handbook. Connecticut, USA: Begell House, 1996.
  • M. Coey and S. Parkin, Handbook of Magnetism and Magnetic Materials. USA: Springer, 2021.
  • B. Gebhart, Buoyancy-Induced Flow and Transport. Washington, USA: Hemisphere, 1988.
  • Z. Asghar, M. W. S. Khan, W. Shatanawi, M. A. Gondal, and A. Ghaffari, “An IFDM analysis of low Reynolds number flow generated in a complex wavy curved passage formed by artificial beating cilia,” Int. J. Mod. Phys. B., vol. 37, no. 19, pp. 2350187, 2023. DOI: 10.1142/S0217979223501874.
  • Z. Asghar, W. Shatanawi, and S. Hussain, “Biomechanics of bacterial gliding motion with Oldroyd-4 constant slime,” Eur. Phys. J. Spec. Top., vol. 232, no. 6, pp. 915–925, 2023. DOI: 10.1140/epjs/s11734-022-00723-2.
  • Z. Asghar, M. Kousar, M. Waqas, M. Irfan, M. Bilal, and W. A. Khan, “Heat generation in mixed convected Williamson liquid stretching flow under generalized Fourier concept,” Appl. Nanosci., vol. 10, no. 12, pp. 4439–4444, 2020. DOI: 10.1007/s13204-020-01500-0.
  • Z. Asghar, R. A. Shah, and N. Ali, “A computational approach to model gliding motion of an organism on a sticky slime layer over a solid substrate,” Biomech. Model Mechanobiol., vol. 21, no. 5, pp. 1441–1455, 2022. DOI: 10.1007/s10237-022-01600-6.
  • Z. Asghar, N. Ali, M. Waqas, M. Nazeer, and W. A. Khan, “Locomotion of an efficient biomechanical sperm through viscoelastic medium,” Biomech. Model Mechanobiol., vol. 19, no. 6, pp. 2271–2284, 2020. DOI: 10.1007/s10237-020-01338-z.
  • K. Javid, N. Ali, and Z. Asghar, “Rheological and magnetic effects on a fluid flow in a curved channel with different peristaltic wave profiles,” J. Braz. Soc. Mech. Sci. Eng., vol. 41, no. 11, pp. 483, 2019. DOI: 10.1007/s40430-019-1993-3.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. New York: Wiley, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.