29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Darcy-Forchheimer hybrid nanofluid flow in an asymmetric channel with an exponential heat source, variable thermal conductivity, and activation energy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 17 Aug 2023, Accepted 26 Dec 2023, Published online: 11 Jan 2024

References

  • S. Salman, A. R. A. Talib, S. Saadon and M. T. H. Sultan, “Hybrid nanofluid flow and heat transfer over backward and forward steps: a review,” Powder Technol., vol. 363, pp. 448–472, 2020. DOI: 10.1016/j.powtec.2019.12.038.
  • R. K. Bumataria, N. K. Chavda and H. Panchal, “Current research aspects in mono and hybrid nanofluid based heat pipe technologies,” Heliyon, vol. 5, no. 5, pp. e01627, 2019. DOI: 10.1016/j.heliyon.2019.e01627.
  • S. U. Devi and S. P. Devi, “Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet,” J. Niger. Math. Soc., vol. 36, no. 2, pp. 419–433, 2017.
  • L. S. Sundar, K. V. Sharma, M. K. Singh and A. C. M. Sousa, “Hybrid nanofluids preparation, thermal properties, heat transfer, and friction factor – a review,” Renew. Sustain. Energy Rev., vol. 68, pp. 185–198, 2017. DOI: 10.1016/j.rser.2016.09.108.
  • A. Asadikia, S. A. A. Mirjalily, N. Nasirizadeh and H. Kargarsharifabad, “Characterization of thermal and electrical properties of hybrid nanofluids prepared with multi-walled carbon nanotubes and Fe2O3 nanoparticles,” Int. Commun. Heat Mass Transf., vol. 117, pp. 104603, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104603.
  • A. I. Ramadhan, W. H. Azmi, R. Mamat and K. A. Hamid, “Experimental and numerical study of heat transfer and friction factor of plain tube with hybrid nanofluids,” Case Stud. Therm. Eng., vol. 22, pp. 100782, 2020. DOI: 10.1016/j.csite.2020.100782.
  • H. Adun, I. Wole-Osho, E. C. Okonkwo, O. Bamisile, M. Dagbasi and S. Abbasoglu, “A neural network-based predictive model for the thermal conductivity of hybrid nanofluids,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104930, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104930.
  • M. Basavarajappa, S. Myson and K. Vajravelu, “Study of multilayer flow of a bi-viscous Bingham fluid sandwiched between hybrid nanofluid in a vertical slab with nonlinear Boussinesq approximation,” Phys. Fluids, vol. 34, no. 12, pp. 122006, 2022. DOI: 10.1063/5.0123131.
  • N. Acharya and K. Das, “Three-dimensional rotating flow of Cu–Al2O3/kerosene oil hybrid nanofluid in presence of activation energy and thermal radiation,” Numer. Heat Transf. A: Appl., vol. 84, no. 6, pp. 586–603, 2023. DOI: 10.1080/10407782.2022.2147111.
  • T. Sharma, R. Kumar, H. Vaidya, C. S. Raju and K. Vajravelu, “Numerical investigation of the hybrid ferrofluid flow in a heterogeneous porous channel with convectively heated and quadratically stretchable walls,” Eur. Phys. J. Plus, vol. 138, no. 8, pp. 1–8, 2023. DOI: 10.1140/epjp/s13360-023-04371-w.
  • A. Mishra and G. Pathak, “A comparative analysis of MoS2-SiO2/H2O hybrid nanofluid and MoS2-SiO2-GO/H2O ternary hybrid nanofluid over an inclined cylinder with heat generation/absorption,” Numer. Heat Transf. A: Appl., vol. 21, pp. 1–30, 2023. 2023. DOI: 10.1080/10407782.2023.2228483.
  • M. Faisal, K. K. Asogwa, F. Mabood and I. A. Badruddin, “Darcy–Forchheimer dynamics of hybrid nanofluid due to a porous Riga surface capitalizing Cattaneo–Christov theory,” Numer. Heat Transf. A: Appl., vol. 19, pp. 1–17, 2023. DOI: 10.1080/10407782.2023.2238891.
  • N. A. Shah et al., “Significance of suction and dual stretching on the dynamics of various hybrid nanofluids: comparative analysis between type I and type II models,” Phys. Scr., vol. 95, no. 9, pp. 095205, 2020. DOI: 10.1088/1402-4896/aba8c6.
  • N. I. Kamis, L. Y. Jiann, S. Shafie, T. K. A. Khairuddin and M. F. Md Basir, “Magnetohydrodynamics boundary layer flow of hybrid nanofluid in a thin-film over an unsteady stretching permeable sheet,” J. Nanofluids, vol. 11, no. 1, pp. 74–83, 2022. DOI: 10.1166/jon.2022.1821.
  • S. Shaw, S. S. Samantaray, A. Misra, M. K. Nayak and O. D. Makinde, “Hydromagnetic flow and thermal interpretations of Cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105816, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105816.
  • K. V. Prasad, K. Vajravelu and H. Vaidya, “Hall effect on MHD flow and heat transfer over a stretching sheet with variable thickness,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 17, no. 4, pp. 288–297, 2016. DOI: 10.1080/15502287.2016.1209795.
  • K. V. Prasad, H. Vaidya, K. Vajravelu and V. Ramanjini, “Analytical study of Cattaneo-Christov heat flux model for Williamson-nanofluid flow over a slender elastic sheet with variable thickness,” J. Nanofluids, vol. 7, no. 3, pp. 583–594, 2018. DOI: 10.1166/jon.2018.1475.
  • S. Sreenadh, K. V. Prasad, H. Vaidya, E. Sudhakara, G. Gopi Krishna and M. Krishnamurthy, “MHD Couette flow of a Jeffrey fluid over a deformable porous layer,” Int. J. Appl. Comput. Math., vol. 3, no. 3, pp. 2125–2138, 2017. DOI: 10.1007/s40819-016-0232-1.
  • K. V. Prasad, K. Vajravelu, H. Vaidya and R. A. Van Gorder, “MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness,” Results Phys., vol. 7, pp. 1462–1474, 2017. DOI: 10.1016/j.rinp.2017.03.022.
  • Z. Abbas, M. Sheikh and S. S. Motsa, “Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation,” Energy, vol. 95, pp. 12–20, 2016. DOI: 10.1016/j.energy.2015.11.039.
  • M. Dhlamini, P. K. Kameswaran, P. Sibanda, S. Motsa and H. Mondal, “Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions,” J. Comput. Des. Eng., vol. 6, no. 2, pp. 149–158, 2019. DOI: 10.1016/j.jcde.2018.07.002.
  • A. Zeeshan, N. Shehzad and R. Ellahi, “Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions,” Results Phys., vol. 8, pp. 502–512, 2018. DOI: 10.1016/j.rinp.2017.12.024.
  • M. Awais, P. Kumam, A. Ali, Memoona  , Z. Shah, and H. Alrabaiah, “Impact of activation energy on hyperbolic tangent nanofluid with mixed convection rheology and entropy optimization,” Alex. Eng. J., vol. 60, no.1, pp. 1123–1135, 2021. DOI: 10.1016/j.aej.2020.10.036.
  • M. Ijaz, M. Ayub and H. Khan, “Entropy generation and activation energy mechanism in nonlinear radiative flow of Sisko nanofluid: rotating disk,” Heliyon, vol. 5, no. 6, pp. e01863, 2019. DOI: 10.1016/j.heliyon.2019.e01863.
  • A. Aldabesh et al., “Unsteady transient slip flow of Williamson nanofluid containing gyrotactic microorganism and activation energy,” Alex. Eng. J., vol. 59, no. 6, pp. 4315–4328, 2020. DOI: 10.1016/j.aej.2020.07.036.
  • I. Ahmad et al., “Thermally developed Cattaneo-Christov Maxwell nanofluid over bidirectional periodically accelerated surface with gyrotactic microorganisms and activation energy,” Alex. Eng. J., vol. 59, no. 6, pp. 4865–4878, 2020. DOI: 10.1016/j.aej.2020.08.051.
  • S. R. R. Reddy, P. Bala Anki Reddy and K. Bhattacharyya, “Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring-Powell nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy,” Adv. Powder Technol., vol. 30, no. 12, pp. 3203–3213, 2019. DOI: 10.1016/j.apt.2019.09.029.
  • M. Azam, “Effects of Cattaneo-Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy,” Case Stud. Therm. Eng., vol. 34, pp. 102048, 2022. DOI: 10.1016/j.csite.2022.102048.
  • M. Al Nuwairan, A. Hafeez, A. Khalid and A. Syed, “Heat generation/absorption effects on radiative stagnation point flow of Maxwell nanofluid by a rotating disk influenced by activation energy,” Case Stud. Therm. Eng., vol. 35, pp. 102047, 2022. DOI: 10.1016/j.csite.2022.102047.
  • Y. Akbar, H. Alotaibi, J. Iqbal, K. S. Nisar and K. A. M. Alharbi, “Thermodynamic analysis for bioconvection peristaltic transport of nanofluid with gyrotactic motile microorganisms and Arrhenius activation energy,” Case Stud. Therm. Eng., vol. 34, pp. 102055, 2022. DOI: 10.1016/j.csite.2022.102055.
  • X. Zhang, D. Yang, M. I. Ur Rehman, A. A. Mousa and A. Hamid, “Numerical simulation of bioconvection radiative flow of Williamson nanofluid past a vertical stretching cylinder with activation energy and swimming microorganisms,” Case Stud. Therm. Eng., vol. 33, pp. 101977, 2022. DOI: 10.1016/j.csite.2022.101977.
  • M. Azam and F. Mabood, “Activation energy and binary chemical reaction aspects in cross nano fluid: an application to pharmaceutical science,” J. Biol. Today’s World, vol. 9, no. 6, pp. 224, 2020.
  • K. Jabeen, “Bioconvective Carreau nanofluid flow with magnetic dipole, viscous, and ohmic dissipation effects subject to Arrhenius activation energy,” Numer. Heat Transf. A: Appl., vol. 7, pp. 1–26, 2023. DOI: 10.1080/10407782.2023.2221005.
  • Z. Abdelmalek et al., “Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: flow and sensitivity analysis,” Alex. Eng. J., vol. 59, no. 5, pp. 3991–4011, 2020. DOI: 10.1016/j.aej.2020.07.006.
  • B. Shankar Goud and G. Dharmaiah, “Role of Joule heating and activation energy on MHD heat and mass transfer flow in the presence of thermal radiation,” Numer. Heat Transf. B: Fundam., vol. 84, no. 5, pp. 620–641, 2023. DOI: 10.1080/10407790.2023.2215917.
  • Y. V. Ravi Kumar, S. Rajender, S. V. H. N. P. Krishna Kumari, and S. Sreenadh, “Peristaltic pumping of a Jeffrey fluid in an asymmetric channel with permeable walls,” Malaya J. Mat., vol. 2, no. 2, pp. 141–150, 2014. DOI: 10.26637/mjm202/006.
  • P. Naga Rani and G. Sarojamma, “Peristaltic transport of a Casson fluid in an asymmetric channel,” Australas. Phys. Eng. Sci. Med., vol. 27, no. 2, pp. 49–59, 2004. DOI: 10.1007/BF03178376.
  • B. Mallikarjuna, S. H. C. V. Subba Bhatta and S. Ramprasad, “Velocity and thermal slip effects on MHD convective radiative two-phase flows in an asymmetric non-uniform channel,” Propuls. Power Res., vol. 10, no. 2, pp. 169–179, 2021. DOI: 10.1016/j.jppr.2021.04.002.
  • N. S. Akbar, S. Nadeem, C. Lee, Z. H. Khan and R. U. Haq, “Numerical study of Williamson nano fluid flow in an asymmetric channel,” Results Phys., vol. 3, pp. 161–166, 2013. DOI: 10.1016/j.rinp.2013.08.005.
  • N. Iqbal, H. Yasmin, B. K. Kometa and A. A. Attiya, “Effects of convection on Sisko fluid with peristalsis in an asymmetric channel,” Math. Comput. Appl., vol. 25, no. 3, pp. 52, 2020. DOI: 10.3390/mca25030052.
  • F. Saba, N. Ahmed, U. Khan and S. T. Mohyud-Din, “A novel coupling of (CNT-Fe3O4/H2O) hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls,” Int. J. Heat Mass Transf., vol. 136, pp. 186–195, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.097.
  • A. Mohammad, A. Salehi and A. Abbassi, “Lattice Boltzmann simulation of heat transfer enhancement in an asymmetrically heated channel filled with random porous media,” J. Por. Media, vol. 20, no. 2, pp. 175–191, 2017. i2.60. DOI: 10.1615/JPorMedia.v20.
  • O. A. Bég, M. F. M. Basir, M. J. Uddin and A. M. Ismail, “Numerical study of slip effects on unsteady asymmetric bioconvective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using Buongiorno’s model,” J. Mech. Med. Biol., vol. 17, no. 3, pp. 1750059, 2017. DOI: 10.1142/S0219519417500592.
  • H. Vaidya et al., “Combined effects of chemical reaction and variable thermal conductivity on MHD peristaltic flow of Phan-Thien-Tanner liquid through inclined channel,” Case Stud. Therm. Eng., vol. 36, no. 36, p. 102214, 2022. DOI: 10.1016/j.csite.2022.102214.
  • P. Devaki, S. Sreenadh, K. Vajravelu, K. V. Prasad and H. Vaidya, “Wall properties and slip consequences on peristaltic transport of a Casson liquid in a flexible channel with heat transfer,” Appl. Math. Nonlinear Sci., vol. 3, no. 1, pp. 277–290, 2018. DOI: 10.21042/AMNS.2018.1.00021.
  • S. Rostami, A. A. Nadooshan and A. Raisi, “An experimental study on the thermal conductivity of new antifreeze containing copper oxide and graphene oxide nano-additives,” Powder Technol., vol. 345, pp. 658–667, 2019. DOI: 10.1016/j.powtec.2019.01.055.
  • H. B. Marulasiddeshi, P. K. Kanti, M. Jamei, S. B. Prakash, S. N. Sridhara and Z. Said, “Experimental study on the thermal properties of Al2O3‐CuO/water hybrid nanofluids: development of an artificial intelligence model,” Int. J Energy Res., vol. 46, no. 15, pp. 21066–21083, 2022. DOI: 10.1002/er.8739.
  • A. Ghafouri and D. Toghraie, “Experimental study on thermal conductivity of SiC-ZnO/ethylene glycol hybrid nanofluid: proposing an optimized multivariate correlation,” J. Taiwan Inst. Chem. Eng., vol. 148, pp. 104824, 2023. DOI: 10.1016/j.jtice.2023.104824.
  • A. M. Ajeena, I. Farkas and P. Víg, “Characterization, rheological behaviour, and dynamic viscosity of ZrO2-SiC (50–50)/DW hybrid nanofluid under different temperatures and solid volume fractions: an experimental study and proposing a new correlation,” Powder Technol., vol. 431, pp. 119069, 2024. DOI: 10.1016/j.powtec.2023.119069.
  • A. M. Alklaibi, K. V. Mouli and L. S. Sundar, “Heat transfer, and friction factor of Fe3O4–SiO2/water hybrid nanofluids in a plate heat exchanger: experimental and ANN predictions,” Int. J. Therm. Sci., vol. 195, pp. 108608, 2024. DOI: 10.1016/j.ijthermalsci.2023.108608.
  • O. G. Fadodun, O. O. Fadodun and A. Kaood, “Numerical investigation of hydrothermal performance and entropy production rates of rGO-CO3O4/H2O hybrid nanofluid in wavy channels using discrete phase model,” Int. J. Therm. Sci., vol. 196, pp. 108724, 2024. DOI: 10.1016/j.ijthermalsci.2023.108724.
  • F. Saba, N. Ahmed, U. Khan, A. Waheed, M. Rafiq and S. T. Mohyud-Din, “Thermophysical analysis of water based (Cu–Al2O3) hybrid nanofluid in an asymmetric channel with dilating/squeezing walls considering different shapes of nanoparticles,” Appl. Sci., vol. 8, no. 9, pp. 1549, 2018. DOI: 10.3390/app8091549.
  • W. F. Xia, M. Ijaz Khan, S. Qayyum, M. Imran Khan and S. Farooq, “Aspects of constructive/destructive chemical reaction with activation energy for Darcy-Forchheimer hybrid nanofluid flow due to semi-infinite asymmetric channel with absorption and generation features,” Ain Shams Eng. J., vol. 12, no. 3, pp. 2981–2989, 2021. DOI: 10.1016/j.asej.2021.02.026.
  • A. Majeed, A. Zeeshan and F. M. Noori, “Numerical study of Darcy-Forchheimer model with activation energy subject to chemically reactive species and momentum slip of order two,” AIP Adv., vol. 9, no. 4, pp. 045035, 2019. DOI: 10.1063/1.5095546.
  • M. Ajithkumar, P. Lakshminarayana and K. Vajravelu, “Diffusion effects on mixed convective peristaltic flow of a bi-viscous Bingham nanofluid through a porous medium with convective boundary conditions,” Phys. Fluids, vol. 35, no. 3, 2023. DOI: 10.1063/5.0142003.
  • N. Khan et al., “Aspects of constructive/destructive chemical reactions for viscous fluid flow between deformable wall channel with absorption and generation features,” Int. Commun. Heat Mass Transf., vol. 120, pp. 104956, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.104956.
  • N. Ahmed, S. T. Mohyud-Din and S. M. Hassan, “Flow and heat transfer of nanofluid in an asymmetric channel with expanding and contracting walls suspended by carbon nanotubes: a numerical investigation,” Aerosp. Sci. Technol., vol. 48, pp. 53–60, 2016. DOI: 10.1016/j.ast.2015.10.022.
  • T. Sajid, M. Sagheer, S. Hussain and M. Bilal, “Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy,” AIP Adv., vol. 8, no. 3, pp. 035102, 2018. DOI: 10.1063/1.5019218.
  • N. Ahmed, U. Khan and S. T. Mohyud-Din, “Influence of nonlinear thermal radiation on the viscous flow through a deformable asymmetric porous channel: a numerical study,” J. Mol. Liq., vol. 225, pp. 167–173, 2017. DOI: 10.1016/j.molliq.2016.11.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.