41
Views
0
CrossRef citations to date
0
Altmetric
Method

Numerical investigation of boiler waterwall corrosion by integrated tube temperature prediction and sulfur evolution model

, , , , &
Received 23 Oct 2023, Accepted 27 Dec 2023, Published online: 08 Jan 2024

References

  • D. Förtsch, F. Kluger, U. Schnell, H. Spliethoff and K. R. Hein, “A kinetic model for the prediction of NO emissions from staged combustion of pulverized coal,” in Symposium (International) on Combustion, vol. 27, pp. 3037–3044, 1998. DOI: 10.1016/S0082-0784(98)80164-1.
  • H. Liu, Y. H. Liu, G. Z. Yi, L. Nie and D. F. Che, “Effects of air staging conditions on the combustion and NOx emission characteristics in a 600 MW wall fired utility boiler using lean coal,” Energy Fuels, vol. 27, no. 10, pp. 5831–5840, 2013. DOI: 10.1021/ef401354g.
  • M. Taniguchi, Y. Kamikawa, T. Tatsumi and K. Yamamoto, “Staged combustion properties for pulverized coals at high temperature,” Combust. Flame, vol. 158, no. 11, pp. 2261–2271, 2011. DOI: 10.1016/j.combustflame.2011.04.005.
  • W. Bai, H. Li, L. Deng, H. Liu and D. Che, “Air-staged combustion characteristics of pulverized coal under high temperature and strong reducing atmosphere conditions,” Energy Fuels, vol. 28, no. 3, pp. 1820–1828, 2014. DOI: 10.1021/ef402305h.
  • W. Bakker, “Waterwall wastage mechanisms in coal-fired boilers: the effect of coal chemistry on waterwall wastage,” Palo Alto,CA: EPRI, 2001. 1004021.
  • J. N. Harb and E. E. Smith, “Fireside corrosion in pc-fired boilers,” Progr. Energy Combust. Sci., vol. 16, no. 3, pp. 169–190, 1990. DOI: 10.1016/0360-1285(90)90048-8.
  • X. Yu, B. Gong, Q. Gao, Y. Zhao, C. Tian and J. Zhang, “Investigation of fireside corrosion at water-cooled wall from a coal-fired power plant in China,” Appl. Therm. Eng., vol. 127, pp. 1164–1171, 2017. DOI: 10.1016/j.applthermaleng.2017.08.053.
  • S. C. Kung, “Prediction of corrosion rate for alloys exposed to reducing/sulfurizing combustion gases,” Mater. Perform., vol. 36, no. 12, pp. 36–40, 1997.
  • X. Sun, Y. Ning, J. Yang, Y. Zhao, Z. Yang and X. Zhou, “Study on high temperature corrosion mechanism of water wall tubes of 350 MW supercritical unit,” Eng. Fail. Anal., vol. 121, pp. 105131, 2021. DOI: 10.1016/j.engfailanal.2020.105131.
  • B. P. Baruah and P. Khare, “Pyrolysis of High Sulfur Indian Coals,” Energy Fuels, vol. 21, no. 6, pp. 3346–3352, 2007. DOI: 10.1021/ef070005i.
  • L. Frigge, J. Ströhle and B. Epple, “Release of sulfur and chlorine gas species during coal combustion and pyrolysis in an entrained flow reactor,” Fuel, vol. 201, pp. 105–110, 2017. DOI: 10.1016/j.fuel.2016.11.037.
  • S. Karlsson, T. Jonsson, J. Hall, J.-E. Svensson and J. Liske, “Mitigation of Fireside Corrosion of Stainless Steel in Power Plants: a Laboratory Study of the Influences of SO2 and KCl on Initial Stages of Corrosion,” Energy Fuels, vol. 28, no. 5, pp. 3102–3109, 2014. DOI: 10.1021/ef402127h.
  • L. Zou, J. Wang, J. F. Yue, L. G. Xu and Y. J. Huang, “Research status of high temperature corrosion of boiler water wall under low-nitrogen combustion,” Power Syst. Eng., vol. 34, no. 02, pp. 6–10, 2018.
  • J. R. Valentine, H.-S. Shim, K. A. Davis, S.-I. Seo and T.-H. Kim, “CFD Evaluation of Waterwall Wastage in Coal-Fired Utility Boilers,” Energy Fuels, vol. 21, no. 1, pp. 242–249, 2007. DOI: 10.1021/ef0602067.
  • M. von Bohnstein, J. Langen, L. Frigge, A. Stroh, J. Ströhle and B. Epple, “Comparison of CFD simulations with measurements of gaseous sulfur species concentrations in a pulverized coal fired 1 MWth furnace,” Energy Fuels, vol. 30, no. 11, pp. 9836–9849, 2016. DOI: 10.1021/acs.energyfuels.6b01695.
  • H.-S. Shim, J. R. Valentine, K. Davis, S.-I. Seo and T.-H. Kim, “Development of fireside waterwall corrosion correlations using pilot-scale test furnace,” Fuel, vol. 87, no. 15–16, pp. 3353–3361, 2008. DOI: 10.1016/j.fuel.2008.05.016.
  • N. Modlinski and T. Hardy, “Development of high-temperature corrosion risk monitoring system in pulverized coal boilers based on reducing conditions identification and CFD simulations,” Appl. Energy, vol. 204, pp. 1124–1137, 2017. DOI: 10.1016/j.apenergy.2017.04.084.
  • W. Yang, et al., “Effects of near-wall air application in a pulverized-coal 300 MWe utility boiler on combustion and corrosive gases,” Energy Fuels, vol. 31, no. 9, pp. 10075–10081, 2017. DOI: 10.1021/acs.energyfuels.7b01476.
  • B. Han, H. Lin and Z. Miao, “Numerical investigation on the optimized arrangement for high-temperature corrosion after low NOx transformation,” J. Therm. Anal. Calorim., vol. 146, no. 5, pp. 2183–2197, 2021. DOI: 10.1007/s10973-021-10734-1.
  • J. W. Yan, D. H. Jin, X. Liu, C. Q. Zhang and H. Y. Wang, “A coupled combustion and hydrodynamic model for the prediction of waterwall tube overheating of supercritical boiler,” Fuel, vol. 334, p. 126589, 2023. DOI: 10.1016/j.fuel.2022.126589.
  • ANSYS Fluent Theory Guide, ANSYS, Inc., Canonsburg, PA, 2018.
  • T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, “A new k-ϵ eddy viscosity model for high reynolds number turbulent flows,” Computers & Fluids, vol. 24, no. 3, pp. 227–238, 1995. DOI: 10.1016/0045-7930(94)00032-T.
  • R. K. Boyd and J. H. Kent, “Three-dimensional furnace computer modelling,” in Symposium (International) on Combustion, vol. 21, pp. 265–274, 1988. DOI: 10.1016/S0082-0784(88)80254-6.
  • F. C. Lockwood, A. P. Salooja and S. A. Syed, “A prediction method for coal-fired furnaces,” Combust. Flame, vol. 38, pp. 1–15, 1980. DOI: 10.1016/0010-2180(80)90033-4.
  • S. Badzioch and P. G. W. Hawksley, “Kinetics of thermal decomposition of pulverized coal particles,” Ind. Eng. Chem. Proc. Des. Dev., vol. 9, no. 4, pp. 521–530, 1970. DOI: 10.1021/i260036a005.
  • Y. K. Hu, H. L. Li and J. Y. Yan, “Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion,” Appl. Energy, vol. 130, pp. 543–551, 2014. DOI: 10.1016/j.apenergy.2014.03.038.
  • C. G. Yin, “On gas and particle radiation in pulverized fuel combustion furnaces,” Appl. Energy, vol. 157, pp. 554–561, 2015. DOI: 10.1016/j.apenergy.2015.01.142.
  • M. Bösenhofer, E.-M. Wartha, C. Jordan and M. Harasek, “The eddy dissipation concept—analysis of different fine structure treatments for classical combustion,” Energies, vol. 11, no. 7, p. 1902, 2018. DOI: 10.3390/en11071902.
  • R. I. Backreedy, R. Habib, J. M. Jones, M. Pourkashanian and A. Williams, “An extended coal combustion model,” Fuel, vol. 78, no. 14, pp. 1745–1754, 1999. DOI: 10.1016/S0016-2361(99)00123-4.
  • R. E. Mitchell, R. H. Hurt, L. L. Baxter and D. R. Hardesty, “Compilation of Sandia coal char combustion data and kinetic analyses - milestone report," Livermore, CA: Sandia Report SAND 92-8208, Sandia National Laboratories.
  • E. H. Chui and G. D. Raithby, “Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method,” Numer. Heat Transfer, Part B: Fundam., vol. 23, no. 3, pp. 269–288, 1993. DOI: 10.1080/10407799308914901.
  • T. F. Smith, Z. F. Shen and J. N. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model,” J. Heat Transfer, vol. 104, no. 4, pp. 602–608, 1982. DOI: 10.1115/1.3245174.
  • L. I. Díez, C. Cortés and J. Pallarés, “Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation,” Fuel, vol. 87, no. 7, pp. 1259–1269, 2008. DOI: 10.1016/j.fuel.2007.07.025.
  • H. Wang, C. Zhang and X. Liu, “Heat transfer calculation methods in three-dimensional CFD model for pulverized coal-fired boilers,” Appl. Therm. Eng., vol. 166, p. 114633, 2020. DOI: 10.1016/j.applthermaleng.2019.114633.
  • C. Herce, et al., “Combustion monitoring in an industrial cracking furnace based on combined CFD and optical techniques,” Fuel, vol. 280, p. 118502, 2020. DOI: 10.1016/j.fuel.2020.118502.
  • Flownex Simulation Environment [Online]. Available: https://flownex.com/.
  • S. Niksa, “Predicting the devolatilization behavior of any coal from its ultimate analysis,” Combust. Flame, vol. 100, no. 3, pp. 384–394, 1995. DOI: 10.1016/0010-2180(94)00060-6.
  • C. Zhou, K. Sendt and B. S. Haynes, “Experimental and kinetic modelling study of H2S oxidation,” Proc. Combust. Inst., vol. 34, no. 1, pp. 625–632, 2013. DOI: 10.1016/j.proci.2012.05.083.
  • F. G. Cerru, A. Kronenburg and R. P. Lindstedt, “Systematically reduced chemical mechanisms for sulfur oxidation and pyrolysis,” Combust. Flame, vol. 146, no. 3, pp. 437–455, 2006. DOI: 10.1016/j.combustflame.2006.05.005.
  • H. Ma, et al., “Reaction mechanism for sulfur species during pulverized coal combustion,” Energy Fuels, vol. 32, no. 3, pp. 3958–3966, 2018. DOI: 10.1021/acs.energyfuels.7b03868.
  • Z. Zhang, D. Chen, Z. Li, N. Cai and J. Imada, “Development of sulfur release and reaction model for computational fluid dynamics modeling in sub-bituminous coal combustion,” Energy Fuels, vol. 31, no. 2, pp. 1383–1398, 2017. DOI: 10.1021/acs.energyfuels.6b02867.
  • B. F. Magnussen and B. H. Hjertager, “On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion,” in Symposium (International) on Combustion, vol. 16, pp. 719–729, 1977. DOI: 10.1016/S0082-0784(77)80366-4.
  • J. P. Kim, U. Schnell and G. Scheffknecht, “Comparison of different global reaction mechanisms for MILD combustion of natural gas,” Combust. Sci. Technol., vol. 180, no. 4, pp. 565–592, 2008. DOI: 10.1080/00102200701838735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.