110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of bio-magnetic nanofluid flow in the human circulatory system

ORCID Icon, &
Received 26 Jun 2023, Accepted 05 Jan 2024, Published online: 17 Jan 2024

References

  • N. K. Mishra, M. Sharma, B. K. Sharma, and U. Khanduri, “Soret and Dufour effects on MHD nanofluid flow of blood through a stenosed artery with variable viscosity,” Int. J. Mod. Phys. B., vol. 37, no. 30, pp. 2350266 2023. DOI: 10.1142/S0217979223502661.
  • M. Usman Ashraf, M. Qasim, and S. Shafie, “Magnetohydrodynamic (MHD) Peristaltic flow of blood containing cylindrical shaped gold nanoparticles in a non-uniform tube in the presence of Joule dissipation,” J. Magn. Magn. Mater, vol. 578, pp. 170708, 2023. DOI: 10.1016/j.jmmm.2023.170708.
  • M. M. Bhatti, M. A. Abbas, and M. M. Rashidi, “Combine effects of Magnetohydrodynamics (MHD) and partial slip on peristaltic Blood flow of Ree–Eyring fluid with wall properties,” Eng. Sci. Technol. an Int. J., vol. 19, no. 3, pp. 1497–1502, 2016. DOI: 10.1016/j.jestch.2016.05.004.
  • W. Alghamdi, A. Alsubie, P. Kumam, A. Saeed, and T. Gul, “MHD hybrid nanofluid flow comprising the medication through a blood artery,” Sci. Rep., vol. 11, no. 1, pp. 11621, 2021. DOI: 10.1038/s41598-021-91183-6.
  • J. R. Keltner, M. S. Roos, P. R. Brakeman, and T. F. Budinger, “Magnetohydrodynamics of blood flow, Magn,” Magn. Reson. Med., vol. 16, no. 1, pp. 139–149, 1990. DOI: 10.1002/mrm.1910160113.
  • A. Shahidian, M. Ghassemi, S. Khorasanizade, M. Abdollahzade, and G. Ahmadi, “Flow analysis of non-Newtonian blood in a magnetohydrodynamic pump,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2667–2670, 2009. DOI: 10.1109/TMAG.2009.2018954.
  • S. R. R. Reddy, “Bio-magnetic pulsatile flow of Ti-alloy-Au/blood couple stress hybrid nanofluid in a rotating channel,” Waves in Random and Complex Media, pp. 1–24, 2022. DOI: 10.1080/17455030.2022.2150333.
  • A. Hussain and N. Farooq, “Gyrotactic micro-organisms swimming under the Hyperbolic Tangent blood nano material and solar biomimetic system over the esophagus,” Int. Commun. Heat Mass Transf., vol. 141, pp. 106579, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106579.
  • M. Imran, T. Kamran, S. A. Khan, T. Muhammad, and H. Waqas, “Physical attributes of bio-convection in nanofluid flow through a paraboloid of revolution on horizontal surface with motile microorganisms,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105947, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105947.
  • N. Rathore and N. Sandeep, “Dynamics of heat passage in hybrid and tri-hybrid Oldroyd-B blood flows through a wedge-shaped artery: a medical application,” Numer. Heat Transf. Part A Appl., pp. 1–17, 2023. DOI: 10.1080/10407782.2023.2201483.
  • C. Kumawat, B. K. Sharma, Q. M. Al-Mdallal, and M. Rahimi-Gorji, “Entropy generation for MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer,” Int. Commun. Heat Mass Transf, vol. 133, pp. 105954, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105954.
  • D. L. Mahendra, J. U. Viharika, V. Ramanjini, O. D. Makinde, and U. B. Vishwanatha, “Entropy analysis on the bioconvective peristaltic flow of gyrotactic microbes in Eyring-Powell nanofluid through an asymmetric channel,” J. Indian Chem. Soc., vol. 100, no. 3, pp. 100935, 2023. DOI: 10.1016/j.jics.2023.100935.
  • E. H. Kasiman, et al., “Mixed finite element formulation for Navier–Stokes equations for magnetic effects on biomagnetic fluid in a rectangular channel,” Materials (Basel), vol. 15, no. 8, pp. 2865, 2022. DOI: 10.3390/ma15082865.
  • N. Rusli, A. B. H. Kueh, and E. H. Kasiman, “The effect of magnetisation and Lorentz forces in a two-dimensional biomagnetic channel flow,” AIP Conf. Proc., vol. 1522, pp. 496–503, 2013.
  • S. R. R. Reddy, G. Ramasekhar, S. Suneetha, and S. Jakeer, “Entropy generation analysis on MHD Ag + Cu/blood tangent hyperbolic hybrid nanofluid flow over a porous plate,” J. Comput. Biophys. Chem., vol. 22, no. 7, pp. 881–895, 2023. DOI: 10.1142/S2737416523500473.
  • S. R. R. Reddy, “Entropy generation on biomagnetic gold-copper/blood hybrid nanofluid flow driven by electrokinetic force in a horizontal irregular channel with bioconvection phenomenon,” Proc IMechE Part CJ Mech. Eng. Sci., vol. 237, no. 7, pp. 1631–1646, 2023. DOI: 10.1177/09544062221130018.
  • S. Jakeer and P. B. A. Reddy, “Stability analysis of electrical magneto hydrodynamic stagnation point flow of Ag-Cu/water hybrid nanofluid over a permeable stretching/shrinking slendering sheet: entropy generation,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2023.
  • S. Jakeer, P. B. A. Reddy, S. R. R. Reddy, and H. T. Basha, “Entropy generation and Melting heat transfer on the Ferrohydrodynamic flow of Fe3O4-Ag/blood hybrid nanofluid with Cattaneo-Christov heat flux model,” Waves in Random and Complex Media, pp. 1–24, 2023. DOI: 10.1080/17455030.2022.2164808.
  • S. Jakeer and B. A. R. Polu, “Homotopy perturbation method solution of magneto-polymer nanofluid containing gyrotactic microorganisms over the permeable sheet with Cattaneo–Christov heat and mass flux model,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 236, pp. 525-534, 2021.
  • S. S. Chauhan and A. Tiwari, “Solute dispersion in non-Newtonian fluids flow through small blood vessels: a varying viscosity approach,” Eur. J. Mech. B/Fluids, vol. 94, pp. 200–211, 2022. DOI: 10.1016/j.euromechflu.2022.02.009.
  • X. Wang, Y. Qiao, H. Qi, and H. Xu, “Numerical study of pulsatile non-Newtonian blood flow and heat transfer in small vessels under a magnetic field,” Int. Commun. Heat Mass Transf, vol. 133, pp. 105930, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105930.
  • Z. W. Tong, et al., “Peristaltic blood transport in non-newtonian fluid confined by porous soaked tube: a numerical study through galerkin finite element technique,” Arab. J. Sci. Eng., vol. 47, no. 1, pp. 1019–1031, 2022. DOI: 10.1007/s13369-021-05981-1.
  • K. Ali, A. Ahmad, S. Ahmad, K. S. Nisar, and S. Ahmad, “Peristaltic pumping of MHD flow through a porous channel: biomedical engineering application,” Waves in Random and Complex Media, pp. 1–30, 2023. DOI: 10.1080/17455030.2023.2168085.
  • V. Makkar, V. Poply, and N. Sharma, “Three-dimensional magnetohydrodynamic non-Newtonian bioconvective nanofluid flow influenced by gyrotactic microorganisms over stretching sheet,” Heat Trans., vol. 52, no. 1, pp. 548–562, 2023. DOI: 10.1002/htj.22706.
  • P. Kumar, K. Tanmoy, and C. Kalidas, “Framing the Cattaneo – Christov heat flux Phenomena on CNT- based Maxwell Nanofluid along stretching sheet with multiple slips,” Arab. J. Sci. Eng., vol. 43, no. 3, pp. 1177–1188, 2018. DOI: 10.1007/s13369-017-2786-6.
  • T. Chakraborty, K. Das, and P. K. Kundu, “Multiple convection-driven Falkner-Skan flow of Carreau nanofluid along a permeable wedge: an analytical approach, Heat Transf,” Heat Trans. Asian Res., vol. 48, no. 3, pp. 914–937, 2019. DOI: 10.1002/htj.21414.
  • K. Das, T. Chakraborty, and P. K. Kundu, “Effect of magnetic field on Oldroyd-B type nanofluid flow over a permeable stretching surface,” Propuls. Power Res., vol. 7, no. 3, pp. 238–246, 2018. DOI: 10.1016/j.jppr.2018.07.008.
  • S. E. a Khlifa and G. J. Assaf, “Comparison of two asphalt mixtures using complex modulus test in Libyan weather,” Hypertension, vol. 10, pp. 966–972, 1995.
  • K. Y. Ghailan, N. S. Akbar, A. Albakri, and M. M. Alshehri, “Biological analysis of emerging nanoparticles with blood through propagating flow along a plumb porous canal in the occurrence of energy and heat transfer,” Surfaces and Interfaces, vol. 40, pp. 103013, 2023. DOI: 10.1016/j.surfin.2023.103013.
  • Y. u U. Bin Turabi, A. Amin, S. Munir, and U. Farooq, “Investigating flow features and heat/mass transfer in two-layer vertical channel with Gr-TiO2 hybrid nanofluid under MHD and radiation effects,” J. Magn. Magn. Mater., vol. 578, pp. 170800, 2023. DOI: 10.1016/j.jmmm.2023.170800.
  • P. B. Kumar and S. Srinivas, “A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel,” Eur. Phys. J. Spec. Top, vol. 230, no. 5, pp. 1465–1474, 2021. DOI: 10.1140/epjs/s11734-021-00057-5.
  • P. Murugesan and D. M. G. Anthony, “Mathematical analysis of thermoregulation effects on the chemical reaction of unsteady MHD bloodflow through a permeable stretching capillary with thermal radiation,” J. Porous Media, vol. 36, pp. 63-83, 2023.
  • Y. Xuan, “An overview of micro/nanoscaled thermal radiation and its applications,” Photonics Nanostruct. - Fundam. Appl., vol. 12, pp. 93–113, 2014. DOI: 10.1016/j.photonics.2014.02.003.
  • M. Priyadharsini and A. David Maxim Gururaj, “Mathematical modelling and analysis of thermoregulation effects on blood viscosity under magnetic effects and thermal radiation in a permeable stretching capillary,” J. Therm. Biol., vol. 111, pp. 103398, 2023. DOI: 10.1016/j.jtherbio.2022.103398.
  • M. Jawad, F. Mebarek-Oudina, H. Vaidya and P. Prashar, “Influence of bioconvection and thermal radiation on MHD Williamson nano Casson fluid flow with the swimming of gyrotactic microorganisms due to porous stretching sheet,” J. Nanofluids, vol. 11, no. 4, pp. 500–509, 2022. DOI: 10.1166/jon.2022.1863.
  • T. Sajid, et al., “Magnetized cross tetra hybrid nanofluid passed a stenosed artery with nonuniform heat source (sink) and thermal radiation: novel tetra hybrid Tiwari and Das nanofluid model,” J. Magn. Magn. Mater, vol. 569, pp. 170443, 2023. DOI: 10.1016/j.jmmm.2023.170443.
  • D. Rajkumar, P. V. Reddy, A. Subramanyam Narayana,  Satya, K. Jagadeshkumar, and A. J. Chamkha, “Pulsating magnetohydrodynamic flow of Fe3O4-blood based micropolar nanofluid between two vertical porous walls with Cattaneo–Christov heat flux and entropy generation,” J. Magn. Magn. Mater., vol. 571, pp. 170564, 2023. DOI: 10.1016/j.jmmm.2023.170564.
  • T. Chakraborty, K. Das, and P. K. Kundu, “Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions,” Alexandria Eng. J., vol. 57, no. 1, pp. 61–71, 2018. DOI: 10.1016/j.aej.2016.11.011.
  • H. T. Basha and R. Sivaraj, “Numerical simulation of blood nanofluid flow over three different geometries by means of gyrotactic microorganisms: Applications to the flow in a circulatory system,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 2, pp. 441–460, 2021. DOI: 10.1177/0954406220947454.
  • H. T. Basha, R. Sivaraj, A. S. Reddy, A. J. Chamkha, and M. Tilioua, “Impacts of temperature-dependent viscosity and variable Prandtl number on forced convective Falkner–Skan flow of Williamson nanofluid,” SN Appl. Sci, vol. 2, no. 3, pp. 1–14, 2020. DOI: 10.1007/s42452-020-2216-3.
  • G. S. Seth and P. K. Mandal, “Analysis of electromagnetohydrodynamic stagnation point flow of nanofluid over a nonlinear stretching sheet with variable thickness,” J. Mech., vol. 35, no. 5, pp. 719–733, 2019. DOI: 10.1017/jmech.2019.2.
  • M. Farooq, A. Anjum, S. Rehman, and M. Y. Malik, “Entropy analysis in thermally stratified Powell-Eyring magnesium-blood nanofluid convection past a stretching surface,” Int. Commun. Heat Mass Transf, vol. 138, pp. 106375, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106375.
  • S. R. R. Reddy, P. B. A. Reddy, and K. Bhattacharyya, “Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring- Powell nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy,” Adv. Powder Technol, vol. 30, no. 12, pp. 3203–3213, 2019. DOI: 10.1016/j.apt.2019.09.029.
  • H. T. Lin and L. K. Lin, “Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number,” Int. J. Heat Mass Transf, vol. 30, no. 6, pp. 1111–1118, 1987. DOI: 10.1016/0017-9310(87)90041-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.