56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A numerical study of thermal and diffusion effects on MHD Jeffrey fluid flow over a porous stretching sheet with activation energy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 15 May 2023, Accepted 11 Feb 2024, Published online: 23 Feb 2024

References

  • M. Iyoko and B. L. Olajuwon, “Study on impact of magnetic dipole and thermal radiation on flow/heat transfer of Jeffery fluid over stretching sheet with suction/injection,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 104, no. 1, pp. 65–83, 2023. DOI: 10.37934/arfmts.104.1.6583.
  • J. Ahmed, et al., “Heat transfer in Jeffrey fluid flow over a power law lubricated surface inspired by solar radiations and magnetic flux,” Case Stud. Therm. Eng., vol. 49, pp. 103220, 2023. DOI: 10.1016/j.csite.2023.103220.
  • M. Trivedi, O. Otegbeye, M. S. Ansari, and T. Fayaz, “Impact of thermal jump condition on Jeffrey fluid flow consisting nanoparticles: an unsteady case,” Int. J. Thermofluids, vol. 18, pp. 100331, 2023. DOI: 10.1016/j.ijft.2023.100331.
  • M. J. Saeed, et al., “Chemically radiative and mixed convection solute transfer in boundary‐layer flow of Jeffrey nanofluid along an inclined stretching cylinder with joule heating and double stratification impacts,” ZAMM‐J. Appl. Math. Mech., vol. 103, no. 6, pp. e202200115, 2023. DOI: 10.1002/zamm.202200115.
  • T. Hussain, S. A. Shehzad, T. Hayat, A. Alsaedi, F. Al-Solamy, and M. Ramzan, “Radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially stretching sheet,” PLos One, vol. 9, no. 8, pp. e103719, 2014. DOI: 10.1371/journal.pone.0103719.
  • S. Bilal, S. U. Mamatha, C. S. K. Raju, B. M. Rao, M. Y. Malik, and A. Akgül, “Dynamics of chemically reactive Jeffery fluid embedded in permeable media along with influence of magnetic field on associated boundary layers under multiple slip conditions,” Results Physics, vol. 28, pp. 104558, 2021. DOI: 10.1016/j.rinp.2021.104558.
  • D. H. Babu, N. Tarakaramu, P. V. Satya Narayana, G. Sarojamma and O. D. Makinde, “MHD flow and heat transfer of a Jeffrey fluid over a porous stretching/shrinking sheet with a convective boundary condition,” IJHT, vol. 39, no. 3, pp. 885–894, 2021. DOI: 10.18280/ijht.390323.
  • K. N. Sneha, U. S. Mahabaleshwar and S. Bhattacharyya, “Consequences of mass transpiration and thermal radiation on Jeffery fluid with nanofluid,” Numer. Heat Transf., Part A: Appl., pp. 1–13, 2023. DOI: 10.1080/10407782.2023.2230353.
  • B. Venkateswarlu and P. V. Satya Narayana, “Cu‐Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperature‐dependent viscosity and viscous dissipation,” Heat Trans., vol. 50, no. 1, pp. 432–449, 2021. DOI: 10.1002/htj.21884.
  • A. Ishak, R. Nazar, and I. Pop, “Steady and unsteady boundary layers due to a stretching vertical sheet in a porous medium using Darcy-Brinkman equation model,” Int. J. Appl. Mech. Eng., vol. 11, no. 3, pp. 623–637, 2006.
  • R. S. Raju, G. J. Reddy, M. A. Kumar, and R. S. R. Gorla, “Jeffrey fluid impact on MHD free convective flow past a vertically inclined plate with transfer effects: EFGM solutions,” Int. J. Fluid Mech. Res., vol. 46, no. 3, pp. 239–260, 2019. DOI: 10.1615/InterJFluidMechRes.2018024682.
  • S. A. Shehzad, A. Alsaedi, and T. Hayat, “Influence of thermophoresis and joule heating on the radiative flow of Jeffrey fluid with mixed convection,” Braz. J. Chem. Eng., vol. 30, no. 4, pp. 897–908, 2013. DOI: 10.1590/S0104-66322013000400021.
  • S. Bashir, M. Ramzan, H. A. S. Ghazwani, K. S. Nisar, C. A. Saleel, and A. Abdelrahman, “Magnetic dipole and thermophoretic particle deposition impact on bioconvective oldroyd-B fluid flow over a stretching surface with Cattaneo–Christov heat flux,” Nanomaterials, vol. 12, no. 13, pp. 2181, 2022. DOI: 10.3390/nano12132181.
  • M. Ramzan, N. Shahmir, and H. A. S. Ghazwani, “Anisotropic slip impact on nanofluid flow over a biaxial exponentially stretching sheet with Hall current: Corcione’s correlation,” Waves Random Complex Media, pp. 1–16, 2022. DOI: 10.1080/17455030.2022.2160030.
  • M. Ramzan, N. Shaheen, H. A. S. Ghazwani, K. S. Nisar, and C. Ahamed Saleel, “Heat transfer performance of temperature-dependent Xue and Yamada–Ota hybrid nanofluid flow models past a curved stretching sheet with generalized Fourier law,” Int. J. Mod. Phys. B, vol. 37, no. 12, pp. 2350119, 2023. DOI: 10.1142/S0217979223501199.
  • D. H. Babu, B. Venkateswarlu, and P. V. S. Narayana, “Soret and Dufour effects on MHD radiative heat and mass transfer flow of a Jeffrey fluid over a stretching sheet,” Front. Heat Mass Transf. (FHMT), vol. 8, 2017. DOI: 10.5098/hmt.8.5.
  • G. Sandhya, G. Sarojamma, P. V. Satya Narayana, and B. Venkateswarlu, “Buoyancy forces and activation energy on the MHD radiative flow over an exponentially stretching sheet with second‐order slip,” Heat Trans., vol. 50, no. 1, pp. 784–800, 2021. DOI: 10.1002/htj.21904.
  • S. Salawu, H. Ogunseye, T. Yusuf, R. Lebelo, and R. Mustapha, “Entropy generation in a magnetohydrodynamic hybrid nanofluid flow over a nonlinear permeable surface with velocity slip effect,” WSEAS Trans. Fluid Mech., vol. 18, pp. 34–48, 2023. DOI: 10.37394/232013.2023.18.4.
  • F. Mabood, T. A. Yusuf, and I. E. Sarris, “Entropy generation and irreversibility analysis on free convective unsteady MHD Casson fluid flow over a stretching sheet with Soret/Dufour in porous media,” Special Top. Rev. Porous Media, vol. 11, no. 6, pp. 595–611, 2020. DOI: 10.1615/SpecialTopicsRevPorousMedia.2020033867.
  • T. A. Yusuf, M. B. Ashraf, and F. Mabood, “Cattaneo–Christov heat flux model for three‐dimensional magnetohydrodynamic flow of an Eyring Powell fluid over an exponentially stretching surface with convective boundary condition,” Numer. Methods Partial, vol. 39, no. 1, pp. 242–253, 2023. DOI: 10.1002/num.22874.
  • F. Mabood, T. A. Yusuf, S. A. Shehzad, and I. A. Badruddin, “Cattaneo–Christov model for triple diffusive natural convection flows over horizontal plate with entropy analysis embedded in porous regime,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., vol. 236, no. 9, pp. 4776–4790, 2022. DOI: 10.1177/09544062211057831.
  • T. A. Yusuf, “Entropy analysis of unsteady MHD nanofluid flow over a stretching surface with effects of variable viscosity and nonuniform heat generation,” Numer. Heat Transf., Part A: Appl., pp. 1–18, 2023. DOI: 10.1080/10407782.2023.2229011.
  • T. A. Yusuf, “Analysis of entropy generation in nonlinear convection flow of unsteady magneto-nanofluid configured by vertical stretching sheet with Ohmic heating,” Int. J. Ambient Energy, vol. 44, no. 1, pp. 2319–2335, 2023. DOI: 10.1080/01430750.2023.2236103.
  • M. A. Kumar and Y. D. Reddy, “Computational modelling of radiative Maxwell fluid flow over a stretching sheet containing nanoparticles with chemical reaction,” J. Indian Chem. Soc., vol. 100, no. 1, pp. 100877, 2023. DOI: 10.1016/j.jics.2022.100877.
  • I. Tlili, “Effects MHD and heat generation on mixed convection flow of Jeffrey fluid in microgravity environment over an inclined stretching sheet,” Symmetry, vol. 11, no. 3, pp. 438, 2019. DOI: 10.3390/sym11030438.
  • R. S. Raju, “Application of finite element method to MHD mixed convection chemically reacting flow past a vertical porous plate with cross diffusion and biot number effects,” AJHMT, vol. 4, no. 3, pp. 53–74, 2017. DOI: 10.7726/ajhmt.2017.1009.
  • S. U. Khan, A. Raza, A. Kanwal, K. Javid, “Mixed convection radiated flow of Jeffrey-type hybrid nanofluid due to inclined oscillating surface with slip effects: a comparative fractional model,” Waves in Random and Complex Media, pp. 1–22, 2022, DOI: 10.1080/17455030.2022.2122628.
  • P. O. Ogunniyi, A. J. Gbadeyan, M. C. Agarana, and T. A. Yusuf, “Nonlinear thermal radiation on MHD tangential hyperbolic hybrid nanofluid over a stretching wedge with convective boundary condition,” Heat Trans., vol. 51, no. 6, pp. 5417–5440, 2022. DOI: 10.1002/htj.22553.
  • M. Ramzan, N. U. Saba, and H. A. S. Ghazwani, “Performance-based numerical appraisal of hybrid and nanofluid flows with Cattaneo-Christov heat flux model in a rotating frame with thermal stratification,” Waves Random Complex Media, pp. 1–21, 2022. DOI: 10.1080/17455030.2022.2097335.
  • M. A. Kumar, Y. D. Reddy, V. S. Rao, and B. S. Goud, “Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate,” Case Stud. Therm. Eng., vol. 24, pp. 100826, 2021. DOI: 10.1016/j.csite.2020.100826.
  • D. R. Yanala, A. K. Mella, S. R. Vempati, and B. S. Goud, “Influence of slip condition on transient laminar flow over an infinite vertical plate with ramped temperature in the presence of chemical reaction and thermal radiation,” Heat Trans., vol. 50, no. 8, pp. 7654–7671, 2021. DOI: 10.1002/htj.22247.
  • Y. D. Reddy, B. S. Goud, A. J. Chamkha, and M. A. Kumar, “Influence of radiation and viscous dissipation on MHD heat transfer Casson nanofluid flow along a nonlinear stretching surface with chemical reaction,” Heat Trans., vol. 51, no. 4, pp. 3495–3511, 2022. DOI: 10.1002/htj.22460.
  • S. Bashir, M. Ramzan, M. Y. Malik, and H. Alotaibi, “Comparative analysis of five nanoparticles in the flow of viscous fluid with nonlinear radiation and homogeneous–heterogeneous reaction,” Arab. J. Sci. Eng., vol. 47, no. 7, pp. 8129–8140, 2022. DOI: 10.1007/s13369-021-06094-5.
  • R. S. Raju, “Unsteady MHD boundary layer flow of Casson fluid over an inclined surface embedded in a porous medium with thermal radiation and chemical reaction,” J. Nanofluids, vol. 7, no. 4, pp. 694–703, 2018. DOI: 10.1166/jon.2018.1500.
  • H. Sadia, M. Mustafa, and M. A. Farooq, “Numerical and series solutions for Von-Kármán flow of viscoelastic fluid inspired by viscous dissipation and Joule heating effects,” Alex. Eng. J., vol. 75, pp. 181–190, 2023. DOI: 10.1016/j.aej.2023.05.075.
  • S. K. Saini, R. Agrawal, and P. Kaswan, “Activation energy and convective heat transfer effects on the radiative Williamson nanofluid flow over a radially stretching surface containing Joule heating and viscous dissipation,” Numer. Heat Transf. Part A: Appl., pp. 1–24, 2023. DOI: 10.1080/10407782.2023.2226815.
  • A. Cham and M. Mustafa, “Boundary layer formations over a stretchable heated cylinder in a viscoelastic fluid with partial slip and viscous dissipation effects,” Numer. Heat Transf. Part A: Appl., pp. 1–13, 2023. DOI: 10.1080/10407782.2023.2210259.
  • B. Venkateswarlu and P. V. Satya Narayana, “Coriolis force impact on the magnetorotating fluid radiating from a moving porous upright plate with viscous dissipation,” Heat Trans., vol. 52, no. 6, pp. 4227–4252, 2023. DOI: 10.1002/htj.22871.
  • B. Venkateswarlu, P. V. S. Narayana, and S. W. Joo, “Exploration of entropy analysis and viscous dissipation on radially convective flow of (Cu‐Al2O3: h2O) hybrid nanofluid over a stretching disk,” Asia‐Pac. J. Chem. Eng., vol. e3002, 2023. DOI: 10.1002/apj.3002.
  • D. Pal and H. Mondal, “Influence of chemical reaction and thermal radiation on mixed convection heat and mass transfer over a stretching sheet in Darcian porous medium with Soret and Dufour effects,” Energy Convers. Manage., vol. 62, pp. 102–108, 2012. DOI: 10.1016/j.enconman.2012.03.017.
  • N. Shaheen, M. Ramzan, A. Alshehri, Z. Shah, and P. Kumam, “Soret–Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media,” Sci. Rep., vol. 11, no. 1, pp. 14513, 2021. DOI: 10.1038/s41598-021-93797-2.
  • N. Venkatesh, M. A. Kumar, and R. Srinivasa Raju, “Dufour and Soret influence on MHD boundary layer flow of a Maxwell fluid over a stretching sheet with nanoparticles,” Heat Trans., vol. 51, no. 6, pp. 5193–5205, 2022. DOI: 10.1002/htj.22543.
  • B. Venkateswarlu, S. Chavan, P. V. S. Narayana, and S. W. Joo, “A numerical investigation of cross‐diffusion on magnetohydrodynamic Cu‐Al2O3/H2O hybrid nanofluid flow over a stretching sheet with chemical reaction,” Asia‐Pac. J. Chem. Eng., vol. e2985, 2023. DOI: 10.1002/apj.2985.
  • A. Shahid, W. Wei, T. Abbas, and M. M. Bhatti, “A computational investigation of diffusivities and heat transfer in the flow of viscoelastic fluid through Darcy–Brinkman–Forchheimer medium,” Numer. Heat Transf., Part B: Fundam., pp. 1–18, 2023. DOI: 10.1080/10407790.2023.2296076.
  • S. Ravikumar, “Rotation effect on a fluid model exhibiting thermo-diffusion in a porous environment subject to convective boundary conditions through a slanted conduit,” Numer. Heat Transf., Part B: Fundam., pp. 1–19, 2023. DOI: 10.1080/10407790.2023.2292189.
  • S. Ullah, I. Ullah, and A. Ali, “Soret and Dufour effects on dissipative Jeffrey nanofluid flow over a curved surface with nonlinear slip, activation energy and entropy generation,” Waves Random Complex Media, pp. 1–23, 2023. DOI: 10.1080/17455030.2022.2164380.
  • N. Shaheen, H. M. Alshehri, M. Ramzan, Z. Shah, and P. Kumam, “Soret and Dufour effects on a Casson nanofluid flow past a deformable cylinder with variable characteristics and Arrhenius activation energy,” Sci. Rep., vol. 11, no. 1, pp. 19282, 2021. DOI: 10.1038/s41598-021-98898-6.
  • M. Trivedi, O. Otegbeye, M. S. Ansari and T. Fayaz, “Flow of Jeffrey fluid near impulsively moving plate with nanoparticle and activation energy,” Int. J. Thermofluids, vol. 18, pp. 100354, 2023. DOI: 10.1016/j.ijft.2023.100354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.