39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of the distribution of sprayed particle deposition in different human nasal cavity

&
Received 22 Nov 2023, Accepted 19 Apr 2024, Published online: 08 May 2024

References

  • M. S. Benninger et al., “Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology,” Otolaryngol. Head Neck Surg., vol. 129, no. 3, pp. S1–S32, 2003.
  • A. Parikh, G. K. Scadding, Y. Darby, and R. C. Baker, “Topical corticosteroids in chronic rhinosinusitis: a randomized, double-blind, placebo-controlled trial using fluticasone propionate aqueous nasal spray,” Rhinology, vol. 39, no. 2, pp. 75–79, 2001.
  • R. M. Rosenfeld, “Clinical practice guideline: adult sinusitis,” Otolaryngol. Head Neck Surg., vol. 137, no. 3, pp. S1–S31, 2007.
  • A. Farnoud, I. Baumann, M. M. Rashidi, O. Schmid, and E. Gutheil, “Simulation of patient-specific bi-directional pulsating nasal aerosol dispersion and deposition with clockwise 45° and 90° nosepieces,” Comput. Biol. Med., vol. 123, pp. 103816, 2020. DOI: 10.1016/j.compbiomed.2020.103816.
  • K. Inthavong, J. Wen, J. Tu, and Z. Tian, “From CT scans to CFD modelling – fluid and heat transfer in a realistic human nasal cavity,” Eng. Appl. Comput. Fluid Mech., vol. 3, no. 3, pp. 321–335, 2009. DOI: 10.1080/19942060.2009.11015274.
  • J. S. Kimbell et al., “Upper airway reconstruction using long-range optical coherence tomography: effects of airway curvature on airflow resistance,” Lasers Surg. Med., vol. 51, no. 2, pp. 150–160, 2019. DOI: 10.1002/lsm.23005.
  • K. Zhao, K. Blacker, Y. Luo, B. Bryant, and J. Jiang, “Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance,” PLoS One, vol. 6, no. 10, pp. e24618, 2011. DOI: 10.1371/journal.pone.0024618.
  • K. Inthavong, Q. Ge, C. M. K. Se, W. Yang, and J. Y. Tu, “Simulation of sprayed particle deposition in a human nasal cavity including a nasal spray device,” J. Aerosol Sci., vol. 42, no. 2, pp. 100–113, 2011. DOI: 10.1016/j.jaerosci.2010.11.008.
  • S. Basu, D. O. Frank-Ito, and J. S. Kimbell, “On computational fluid dynamics models for sinonasal drug transport: relevance of nozzle subtraction and nasal vestibular dilation,” Int. J. Numer. Method. Biomed. Eng., vol. 34, no. 4, pp. e2946, 2018. DOI: 10.1002/cnm.2946.
  • S. Basu, J. S. Kimbell, A. M. Zanation, C. S. Ebert Jr., and B. A. Senior, “Clinical questions and the role CFD can play,” Bull. Am. Phys. Soc., vol. 61, 2016.
  • B. M. Brandon et al., “Comparison of airflow between spreader grafts and butterfly grafts using computational fluid dynamics in a cadaveric model,” JAMA Facial Plast, Surg,, vol. 20, no. 3, pp. 215–221, 2018. DOI: 10.1001/jamafacial.2017.1994.
  • B. M. Brandon et al., “Nasal airflow changes with bioabsorbable implant, butterfly and spreader grafts,” Laryngoscope, vol. 130, no. 12, pp. E817–E823, 2020. DOI: 10.1002/lary.28691.
  • D. O. Frank et al., “Quantification of airflow into the maxillary sinuses before and after functional endoscopic sinus surgery,” Int. Forum Allergy Rhinol., vol. 3, no. 10, pp. 834–840, 2013. DOI: 10.1002/alr.21203.
  • L. F. Tracy et al., “Impact of endoscopic craniofacial resection on simulated nasal airflow and heat transport,” Int. Forum Allergy Rhinol., vol. 9, no. 8, pp. 900–909, 2019. DOI: 10.1002/alr.22328.
  • J. Kimbell et al., “Optimisation of nasal delivery devices using computational models,” Respir. Drug Deliv., vol. 9, pp. 1, 2004.
  • J. Y. Tu, “Numerical investigation of particle flow behavior in particle-wall function,” Aerosol. Sci. Technol, vol. 32, no. 6, pp. 509–526, 2000. DOI: 10.1080/027868200303443.
  • J. Y. Tu, B. Abu-Hijleh, C. Xue, and C. G. Li, “CFD simulation of air/particle flow in the human nasal cavity,” presented at the Proceedings of 5th International Conference on Multiphase Flow, Paper 209, Yokohama, Japan, May 30-June 4, 2004.
  • Y. S. Cheng et al., “Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway,” J. Aerosol. Med., vol. 14, no. 2, pp. 267–280, 2001. DOI: 10.1089/08942680152484199.
  • K. Inthavong et al., “A numerical study of spray particle deposition in a human nasal cavity,” Aerosol Sci. Technol., vol. 40, no. 11, pp. 1034–1045, 2006. DOI: 10.1080/02786820600924978.
  • K. Inthavong, W. Yang, M. C. Fung, and J. Y. Tu, “External and near-nozzle spray characteristics of a continuous spray atomized from a nasal spray device,” Aerosol Sci. Technol., vol. 46, no. 2, pp. 165–177, 2012. DOI: 10.1080/02786826.2011.617793.
  • X. Liu, W. H. Doub, and C. Guo, “Evaluation of droplet velocity and size from nasal spray devices using phase doppler anemometry (PDA),” Int. J. Pharm., vol. 388, no. 1-2, pp. 82–87, 2010. DOI: 10.1016/j.ijpharm.2009.12.041.
  • T. Dbouk and D. Drikakis, “On respiratory droplets and face masks,” Phys. Fluids, vol. 32, pp. 063303, 2020.
  • H. Shi, C. Kleinstreuer, Z. Zhang, and C. S. Kim, “Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions,” Phys. Fluids, vol. 16, no. 7, pp. 2199–2213, 2004. DOI: 10.1063/1.1724830.
  • Z. Zhang and C. Kleinstreuer, “Transient airflow structures and particle transport in a sequentially branching lung airway model,” Phys. Fluids, vol. 14, no. 2, pp. 862–880, 2002. DOI: 10.1063/1.1433495.
  • S. Basu Jr. et al., “Numerical evaluation of spray position for improved nasal drug delivery,” Sci. Rep., vol. 10, no. 1, pp. 10568, 2020. DOI: 10.1038/s41598-020-66716-0.
  • V. Covello, C. Pipolo, A. Saibene, G. Felisati, and M. Quadrio, “Numerical simulation of thermal water delivery in the human nasal cavity,” Comput. Biol. Med., vol. 100, pp. 62–73, 2018. DOI: 10.1016/j.compbiomed.2018.06.029.
  • A. Farnoud et al., “Numerical and machine learning analysis of the parameters affecting the regionally delivered nasal dose of nano- and micro-sized aerosolized drugs,” Pharmaceuticals, vol. 16, no. 1, pp. 81, 2023. DOI: 10.3390/ph16010081.
  • M. Kiaee, H. Wachtel, M. L. Noga, A. R. Martin, and W. H. Finlay, “An idealized geometry that mimics average nasal spray deposition in adults: a computational study,” Comput. Biol. Med., vol. 107, pp. 206–217, 2019. DOI: 10.1016/j.compbiomed.2019.02.013.
  • M. Kiasadegh, H. Emdad, G. Ahmadi, and O. Abouali, “Transient numerical simulation of airflow and fibrous particles in a human upper airway model,” J. Aerosol Sci., vol. 140, pp. 105480, 2020. DOI: 10.1016/j.jaerosci.2019.105480.
  • H. Shi, C. Kleinstreuer, and Z. Zhang, “Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness,” J. Aerosol Sci., vol. 38, no. 4, pp. 398–419, 2007. DOI: 10.1016/j.jaerosci.2007.02.002.
  • J. Xi et al., “Understanding the mechanisms underlying pulsating aerosol delivery to the maxillary sinus: in vitro tests and computational simulations,” Int. J. Pharm., vol. 520, no. 1-2, pp. 254–266, 2017. DOI: 10.1016/j.ijpharm.2017.02.017.
  • A. Lintermann and W. Schröder, “A hierarchical numerical journey through the nasal cavity: from nose-like models to real anatomies,” Flow Turbul. Combust., vol. 102, no. 1, pp. 89–116, 2019. DOI: 10.1007/s10494-017-9876-0.
  • A. Issakhov, A. Alimbek, and A. Issakhov, “A numerical study for the assessment of air pollutant dispersion with chemical reactions from a thermal power plant,” Eng. Appl. Comput. Fluid Mech., vol. 14, no. 1, pp. 1035–1061, 2020. DOI: 10.1080/19942060.2020.1800515.
  • A. Issakhov, A. Abylkassymova, and A. Issakhov, “Assessment of the influence of the barriers height and trees with porosity properties on the dispersion of emissions from vehicles in a residential area with various types of building developments,” J. Cleaner Prod., vol. 366, pp. 132581, 2022. DOI: 10.1016/j.jclepro.2022.132581.
  • A. Issakhov and A. Mashenkova, “Numerical study for the assessment of pollutant dispersion from a thermal power plant under the different temperature regimes,” Int. J. Environ. Sci. Technol., vol. 16, no. 10, pp. 6089–6112, 2019. DOI: 10.1007/s13762-019-02211-y.
  • A. Issakhov and M. Imanberdiyeva, “Numerical simulation of the movement of water surface of dam break flow by VOF methods for various obstacles,” Int. J. Heat Mass Transf., vol. 136, pp. 1030–1051, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.034.
  • A. Issakhov, A. Alimbek, and A. Abylkassymova, “Numerical modeling of water pollution by products of chemical reactions from the activities of industrial facilities at variable and constant temperatures of the environment,” J. Contam. Hydrol., vol. 252, pp. 104116, 2023. DOI: 10.1016/j.jconhyd.2022.104116.
  • A. Issakhov and A. Abylkassymova, “Numerical analysis of solid barrier heights and trees with porosity properties influence on the automobile’s emission dispersion in the residential area,” Ecol. Modell., vol. 484, pp. 110395, 2023. DOI: 10.1016/j.ecolmodel.2023.110395.
  • A. Issakhov, A. Abylkassymova, and A. Issakhov, “Numerical study of the dam-break flood over natural rivers with macroscopic rocks on movable beds,” Comput. Geotech., vol. 164, pp. 105793, 2023. DOI: 10.1016/j.compgeo.2023.105793.
  • A. Issakhov, Z. Rakhymzhanova, and A. Abylkassymova, “Numerical simulation of the effect of height and number of heaters on heat transfer during natural convection in a cubic enclosure filled with nanofluid,” Numer. Heat Transf. Part A Appl., pp. 1–22, 2023. DOI: 10.1080/10407782.2023.2222905.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Boca Raton, 1980.
  • I. Hahn, P. W. Scherer, and M. Mozell, “Velocity profiles measured for airflow through a large-scale model of the human nasal cavity,” J. Appl. Physiol., vol. 75, no. 5, pp. 2273–2287, 1993. DOI: 10.1152/jappl.1993.75.5.2273.
  • J. Wen, K. Inthavong, J. Y. Tu, and S. Wang, “numerical simulations for detailed airflow dynamics in a human nasal cavity,” Respir. Physiol. Neurobiol., vol. 161, no. 2, pp. 125–135, 2008. DOI: 10.1016/j.resp.2008.01.012.
  • D. J. Doorly, D. J. Taylor, A. M. Gambaruto, R. C. Schroter, and N. Tolley, “Nasal architecture: form and flow,” Philos. Trans. A Math. Phys. Eng. Sci., vol. 366, no. 1879, pp. 3225–3246, 2008. DOI: 10.1098/rsta.2008.0083.
  • D. F. Proctor and J. C. F. Chang, “Comparative anatomy and physiology of the nasal cavity,” in Nasal Tumors in Animals and Man, vol. I. Boca Raton: CRC Press, 2017, pp. 1–34.
  • A. Issakhov, A. Sabyrkulova, and A. Abylkassymova, “Influence of tilt angles and different models of fluid viscosity on coupled natural convection in a differentially heated closed square cavity with a partition,” Numer. Heat Transf. Part A Appl., pp. 1–19, 2024. DOI: 10.1080/10407782.2023.2299287.
  • C. Li, J. Jiang, H. Dong, and K. Zhao, “Computational modeling and validation of human nasal airflow under various breathing conditions,” J. Biomech., vol. 64, pp. 59–68, 2017. DOI: 10.1016/j.jbiomech.2017.08.031.
  • H. Calmet et al., “Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions,” PLoS One, vol. 14, no. 9, pp. e0221330, 2019. DOI: 10.1371/journal.pone.0221330.
  • S. Naftali, R. C. Schroter, R. J. Shiner, and D. Elad, “Transport phenomena in the human nasal cavity: a computational model,” Ann. Biomed. Eng., vol. 26, no. 5, pp. 831–9, Sep-Oct. 1998. PMID: 9779956. DOI: 10.1114/1.108.
  • K. Keyhani, P. W. Scherer, and M. M. Mozell, “Numerical simulation of airflow in the human nasal cavity,” J. Biomech. Eng., vol. 117, no. 4, pp. 429–441, 1995. DOI: 10.1115/1.2794204.
  • A. Issakhov, A. Sabyrkulova, and A. Abylkassymova, “The fluidstructure interaction during blood flow in a flexible stenotic thoracic aorta: Numerical study,” Computers & Mathematics with Applications, vol. 165, pp. 39–51, 2024. DOI: 10.1016/j.camwa.2024.03.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.