84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sodium alginate-based MHD ternary nanofluid flow across a cone and wedge with exothermic/endothermic chemical reactions: A numerical study

, , , ORCID Icon, ORCID Icon &
Received 28 Feb 2024, Accepted 10 May 2024, Published online: 22 May 2024

References

  • S. U. S. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne, IL, USA: Argonne National Lab. (ANL). ANL/MSD/CP-84938; CONF-95113529, Oct. 1995, Accessed: May 06, 2024. [Online]. Available: https://www.osti.gov/biblio/196525.
  • Z. Khan et al., “Intelligent computing for electromagnetohydrodynamic bioconvection flow of micropolar nanofluid with thermal radiation and stratification: Levenberg–Marquardt backpropagation algorithm,” AIP Adv., vol. 14, no. 3, pp. 035224, Mar. 2024. DOI: 10.1063/5.0187124.
  • A. Mishra and M. Kumar, “Influence of viscous dissipation and heat generation/absorption on Ag-water nanofluid flow over a riga plate with suction,” FMR, vol. 46, no. 2, 2019. DOI: 10.1615/InterJFluidMechRes.2018025291.
  • M. Kulkarni and H. F. Shankar, “Numerical investigation of mixed convective Williamson nanofluid flow over a stretching/shrinking wedge in the presence of chemical reaction parameter and liquid hydrogen diffusion,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–14, 2024. DOI: 10.1080/10407782.2024.2335550.
  • A. Mishra and M. Kumar, “Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating,” SN Appl. Sci., vol. 2, no. 8, pp. 1350, Jul. 2020. DOI: 10.1007/s42452-020-3156-7.
  • A. Mishra and M. Kumar, “Thermal performance of MHD nanofluid flow over a stretching sheet due to viscous dissipation, Joule heating and thermal radiation,” Int. J. Appl. Comput. Math., vol. 6, no. 4, pp. 123, Aug. 2020. DOI: 10.1007/s40819-020-00869-4.
  • J. Madhu et al., “Dynamics of pollutant dispersion and solid–fluid interfacial layer in Jeffrey nanofluid flow subjected to waste discharge concentration: implementation of probabilists’ Hermite polynomial collocation method,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–19, 2024. DOI: 10.1080/10407782.2024.2319349.
  • J. K. Madhukesh, F. Sahar, B. C. Prasannakumara, and S. A. Shehzad, “Waste discharge concentration and quadratic thermal radiation influences on time-dependent nanofluid flow over a porous rotating sphere,” Numer. Heat Transf. Part B: Fundam., vol. 0, no. 0, pp. 1–19, 2024. DOI: 10.1080/10407790.2024.2336205.
  • K. Saad Albalawi et al., “Mathematical modeling of carboxymethyl cellulose water-based hybrid nanofluid flow between rotating disk and stationary cone,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–16, 2024. DOI: 10.1080/10407782.2024.2328761.
  • F. S. Al-Mubaddel et al., “Rheological model for generalized energy and mass transfer through hybrid nanofluid flow comprised of magnetized cobalt ferrite nanoparticles,” J. Nanomater., vol. 2022, pp. e7120982–11, Apr. 2022. DOI: 10.1155/2022/7120982.
  • I. Haq et al., “Impact of homogeneous and heterogeneous reactions in the presence of hybrid nanofluid flow on various geometries,” Front Chem., vol. 10, pp. 1032805, Oct. 2022. DOI: 10.3389/fchem.2022.1032805.
  • M. Faisal, K. K. Asogwa, F. Mabood, and I. A. Badruddin, “Darcy–Forchheimer dynamics of hybrid nanofluid due to a porous Riga surface capitalizing Cattaneo–Christov theory,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–17, 2023. DOI: 10.1080/10407782.2023.2238891.
  • G. K. Ramesh, J. K. Madhukesh, U. Khan, S. M. Hussain, and A. M. Galal, “Inspection of hybrid nanoparticles flow across a nonlinear/linear stretching surface when heat sink/source and thermophoresis particle deposition impacts are significant,” Int. J. Mod. Phys. B, vol. 37, no. 01, pp. 2350008, Jan. 2023. DOI: 10.1142/S021797922350008X.
  • R. Rehman, U. Khan, H. A. Wahab, and B. Ullah, “Second law analysis for the flow of hybrid nanofluid over a wedge,” Waves Random Complex Media, vol. 0, no. 0, pp. 1–16, 2022. DOI: 10.1080/17455030.2022.2155726.
  • V. Puneeth, S. Manjunatha, J. K. Madhukesh, and G. K. Ramesh, “Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: a modified Buongiorno’s model aspects,” Chaos Solitons Fractals, vol. 152, pp. 111428, Nov. 2021. DOI: 10.1016/j.chaos.2021.111428.
  • F. A. A. Elsebaee et al., “Motile micro-organism based trihybrid nanofluid flow with an application of magnetic effect across a slender stretching sheet: numerical approach,” AIP Adv., vol. 13, no. 3, pp. 035237, Mar. 2023. DOI: 10.1063/5.0144191.
  • A. Mishra and G. Pathak, “A comparative analysis of MoS2-SiO2/H2O hybrid nanofluid and MoS2-SiO2-GO/H2O ternary hybrid nanofluid over an inclined cylinder with heat generation/absorption,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–30, 2023. DOI: 10.1080/10407782.2023.2228483.
  • K. Karthik, J. K. Madhukesh, S. Kiran, K. V. Nagaraja, B. C. Prasannakumara, and G. Fehmi, “Impacts of thermophoretic deposition and thermal radiation on heat and mass transfer analysis of ternary nanofluid flow across a wedge,” Int. J. Model. Simul., vol. 0, no. 0, pp. 1–13, 2024. DOI: 10.1080/02286203.2023.2298234.
  • A. Mishra, G. Pathak, and A. Kumar, “Computational analysis of bioconvection of MoS2-SiO2-GO/H2O ternary hybrid nanofluid containing gyrotactic microorganisms over an exponentially stretching sheet with chemical reaction,” BioNanoScience, Dec. 2023. DOI: 10.1007/s12668-023-01279-8.
  • J. K. Madhukesh, I. E. Sarris, K. Vinutha, B. C. Prasannakumara, and A. Abdulrahman, “Computational analysis of ternary nanofluid flow in a microchannel with nonuniform heat source/sink and waste discharge concentration,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–18, 2023. DOI: 10.1080/10407782.2023.2240509.
  • A. Mishra, S. K. Rawat, M. Yaseen, and M. Pant, “Development of machine learning algorithm for assessment of heat transfer of ternary hybrid nanofluid flow towards three different geometries: case of artificial neural network,” Heliyon, vol. 9, no. 11, pp. e21453, Nov. 2023. DOI: 10.1016/j.heliyon.2023.e21453.
  • T. K. Kumar et al., “The magnetic dipole-induced ternary-hybrid nanofluid flow behavior along a vertical and horizontal wall under free, mixed, and forced convection,” Numer. Heat Transf. Part A-Appl. 2023. Accessed: May 06, 2024. [Online]. Available: https://scholar.google.com/scholar?cluster=15563188283599056253&hl=en&oi=scholarr
  • A. Mishra and M. Kumar, “Numerical analysis of MHD nanofluid flow over a wedge, including effects of viscous dissipation and heat generation/absorption, using Buongiorno model,” Heat Transf., vol. 50, no. 8, pp. 8453–8474, 2021. DOI: 10.1002/htj.22284.
  • S. P. Singh, H. Upreti, and M. Kumar, “Investigating the quadratic convective flow attributes of radiative Casson hybrid nanofluid flow across cone and wedge using the Cattaneo-Christov model,” Numer. Heat Transf. Part B: Fundam., vol. 0, no. 0, pp. 1–24, 2024. DOI: 10.1080/10407790.2024.2312954.
  • H. F. Shankar and M. Kulkarni, “Double diffusive mixed convective flow over a wedge and cone in the presence of Brownian diffusion and thermophoresis parameter,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–13, 2024. DOI: 10.1080/10407782.2024.2341434.
  • M. B. Rekha, I. E. Sarris, J. K. Madhukesh, K. R. Raghunatha, and B. C. Prasannakumara, “Impact of thermophoretic particle deposition on heat transfer and nanofluid flow through different geometries: an application to solar energy,” Chin. J. Phys., vol. 80, pp. 190–205, Dec. 2022. DOI: 10.1016/j.cjph.2022.06.023.
  • P. Jayavel, H. Upreti, D. Tripathi, and A. K. Pandey, “Irreversibility and heat transfer analysis in MHD Darcy-Forchheimer flow of Casson hybrid nanofluid flow through cone and wedge,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–27, 2023. DOI: 10.1080/10407782.2023.2260948.
  • M. I. Ur Rehman, H. Chen, F. Z. Duraihem, M. Hussien, A. Hamid, and H. Qi, “Darcy-Forchheimer aspect on unsteady bioconvection flow of Reiner-Philippoff nanofluid along a wedge with swimming microorganisms and Arrhenius activation energy,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–19, 2024. DOI: 10.1080/10407782.2024.2314221.
  • R. K. Mandal, H. Maiti, and S. K. Nandy, “Bioconvective MHD flow of Williamson nanofluid past an expandable Riga wedge in the presence of activation energy, mass suction and velocity slip,” Numer. Heat Transf. Part A: Appl., vol. 0, no. 0, pp. 1–30, 2023. DOI: 10.1080/10407782.2023.2263155.
  • M. C. Jayaprakash, M. D. Alsulami, B. Shanker, and R. S. Varun Kumar, “Investigation of Arrhenius activation energy and convective heat transfer efficiency in radiative hybrid nanofluid flow,” Waves Random Complex Media, vol. 0, no. 0, pp. 1–13, 2022. DOI: 10.1080/17455030.2021.2022811.
  • K. Karthik et al., “Computational examination of heat and mass transfer of nanofluid flow across an inclined cylinder with endothermic/exothermic chemical reaction,” Case Stud. Thermal Eng., vol. 57, pp. 104336, May 2024. DOI: 10.1016/j.csite.2024.104336.
  • R. S. Varun Kumar et al., “Analyzing magnetic dipole impact in fluid flow with endothermic/exothermic reactions: neural network simulation,” Phys. Scr., vol. 99, no. 6, pp. 065215, May 2024. DOI: 10.1088/1402-4896/ad4072.
  • G. K. Ramesh, J. K. Madhukesh, E. H. Aly, and B. J. Gireesha, “Endothermic and exothermic chemical reaction on MHD ternary (Fe2O4–TiO2–Ag/H2O) nanofluid flow over a variable thickness surface,” J. Therm. Anal. Calorim., Apr. 2024. DOI: 10.1007/s10973-024-13013-x.
  • S. Naryal, T. Sharma, J. P. Sharma, R. Kumar, and K. S. Nisar, “Non-Newtonian magnetic nanofluid flow with activation energy: updated nanofluid model,” Numer. Heat Transf., Part B: fundam., vol. 0, no. 0, pp. 1–20, 2024. DOI: 10.1080/10407790.2024.2312966.
  • J. K. Madhukesh, B. C. Prasannakumara, S. A. Shehzad, M. I. Anwar, and S. Nasir, “Endothermic and exothermic chemical reactions’ influences on a nanofluid flow across a permeable microchannel with a porous medium,” Int. J. Ambient Energy, vol. 45, no. 1, pp. 2325515, Dec. 2024. DOI: 10.1080/01430750.2024.2325515.
  • M. Azam, “Non-linear radiative heat flux of Williamson nanofluid with gyrotactic microorganisms, activation energy and bioconvection,” Waves Random Complex Media, vol. 0, no. 0, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2149883.
  • S. Mishra, H. Mondal, and P. K. Kundu, “Analysis of activation energy and microbial activity on couple stress nanofluid with heat generation,” Int. J. Ambient Energy, vol. 45, no. 1, pp. 2266429, Dec. 2024. DOI: 10.1080/01430750.2023.2266429.
  • X. Zhao et al., “Buoyancy driven bioconvective Casson nanofluid flow over a vertical stretching cylinder in Darcy–Forchheimer permeable medium with Arrhenius activation energy and chemical reaction,” Numer. Heat Transf., Part A: Appl., vol. 0, no. 0, pp. 1–16, 2024. DOI: 10.1080/10407782.2024.2333502.
  • S. Das, A. Ali, R. N. Jana, and O. D. Makinde, “EDL impact on mixed magneto-convection in a vertical channel using ternary hybrid nanofluid,” Chem. Eng. J. Adv., vol. 12, pp. 100412, Nov. 2022. DOI: 10.1016/j.ceja.2022.100412.
  • Y. Mehmood, R. Shafqat, I. E. Sarris, M. Bilal, T. Sajid, and T. Akhtar, “Numerical investigation of MWCNT and SWCNT fluid flow along with the activation energy effects over quartic auto catalytic endothermic and exothermic chemical reactions,” Mathematics, vol. 10, no. 24, pp. 4636, Jan. 2022. Art. no. 24, DOI: 10.3390/math10244636.
  • M. Bilal, I. Ullah, M. M. Alam, W. Weera, and A. M. Galal, “Numerical simulations through PCM for the dynamics of thermal enhancement in ternary MHD hybrid nanofluid flow over plane sheet, cone, and wedge,” Symmetry, vol. 14, no. 11, pp. 2419, Nov. 2022. Art. no. 11, DOI: 10.3390/sym14112419.
  • Y.-M. Chu et al., “Thermophoresis particle deposition analysis for nonlinear thermally developed flow of Magneto-Walter’s B nanofluid with buoyancy forces,” Alexandria Eng. J., vol. 60, no. 1, pp. 1851–1860, Feb. 2021. DOI: 10.1016/j.aej.2020.11.033.
  • N. S. Akbar, S. Nadeem, R. U. Haq, and Z. H. Khan, “Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet,” Indian J. Phys., vol. 87, no. 11, pp. 1121–1124, Nov. 2013. DOI: 10.1007/s12648-013-0339-8.
  • F. M. Ali, R. Nazar, N. M. Arifin, and I. Pop, “MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field,” Heat Mass Transf., vol. 47, no. 2, pp. 155–162, Feb. 2011. DOI: 10.1007/s00231-010-0693-4.
  • B. Childs, M. Scott, and J. W. Daniel, “Codes for boundary-value problems in ordinary differential equations,” Proceedings of a Working Conference, May 14-17, 1978, 1979. Springer Science & Business Media.
  • R. J. P. Gowda, A. Rauf, R. Naveen Kumar, B. C. Prasannakumara, and S. A. Shehzad, “Slip flow of Casson–Maxwell nanofluid confined through stretchable disks,” Indian J. Phys., vol. 96, no. 7, pp. 2041–2049, Jun. 2022. DOI: 10.1007/s12648-021-02153-7.
  • K. S. Albalawi et al., “Impact of waste discharge concentration on fluid flow in inner stretched and outer stationary co-axial cylinders,” Appl. Therm. Eng., vol. 244, pp. 122757, May 2024. DOI: 10.1016/j.applthermaleng.2024.122757.
  • S. Li et al., “Aspects of an induced magnetic field utilization for heat and mass transfer ferromagnetic hybrid nanofluid flow driven by pollutant concentration,” Case Stud. Thermal Eng., vol. 53, pp. 103892, Jan. 2024. DOI: 10.1016/j.csite.2023.103892.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.