49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Linear and non-linear stability analysis of double-diffusive Hadley-Prats flow through horizontal porous layer with non-uniform thermal and solutal gradients

, ORCID Icon, & ORCID Icon
Received 12 Dec 2023, Accepted 22 May 2024, Published online: 17 Jun 2024

References

  • R. Vadivambal and D. S. Jayas, “Non-uniform temperature distribution during microwave heating of food materials-A review,” Food Bioproc. Tech., vol. 3, pp. 161–171, 2008. DOI: 10.1007/s11947-008-0136-0.
  • X. Chen and A. Li, “An experimental study on particle deposition above near-wall heat source,” Build. Environ., vol. 81, pp. 139–149, 2014. DOI: 10.1016/j.buildenv.2014.06.020.
  • S. Saravanan and M. Meenasaranya, “Universal stability of filtration convection caused by heat generation,” Int. J. Non-Linear Mech., vol. 67, pp. 39–41, 2014. DOI: 10.1016/j.ijnonlinmec.2014.07.006.
  • C. W. Horton and F. T. Rogers, “Convection currents in a porous medium,” J. Appl. Phys., vol. 16, no. 6, pp. 367–370, 1945. DOI: 10.1063/1.1707601.
  • E. R. Lapwood, “Convection of a fluid in a porous medium,” Math. Proc. Camb. Phil. Soc., vol. 44, no. 4, pp. 508–521, 1948. DOI: 10.1017/S030500410002452X.
  • D. A. Nield and A. Bejan, “Convection in Porous Media,” New York: Springer, 2013. DOI: 10.1007/978-1-4614-5541-7.
  • J. E. Weber, “Convection in a porous medium with horizontal and vertical temperature gradients,” Int. J. Heat Mass Transf., vol. 17, no. 2, pp. 241–248, 1974. DOI: 10.1016/0017-9310(74)90085-4.
  • D. A. Nield, “Convection in a porous medium with inclined temperature gradient,” Int. J. Heat Mass Transf., vol. 34, no. 1, pp. 87–92, 1991. DOI: 10.1016/0017-9310(91)90176-F.
  • D. A. Nield, “Convection in a porous medium with inclined temperature gradient: additional results,” Int. J. Hear Mass Transf., vol. 37, no. 18, pp. 3021–3025, 1994. DOI: 10.1016/0017-9310(94)90356-5.
  • S. M. Alex and P. R. Patil, “Effect of a variable gravity field on convection in an anisotropic porous medium with internal heat source and inclined temperature gradient,” J. Heat Transf., vol. 124, no. 1, pp. 144–150, 2002. DOI: 10.1115/1.1420711.
  • A. Barletta and D. A. Nield, “Instability of Hadley-Prats flow with viscous heating in a horizontal porous layer,” Transp. Porous Med., vol. 84, pp. 241–256, 2009. DOI: 10.1007/s11242-009-9494-y.
  • C. Parthiban and P. R. Patil, “Thermal instability in an anisotropic porous medium with internal heat source and inclined temperature gradient,” Int. Commun. Heat Mass Transf., vol. 24, no. 7, pp. 1049–1058, 1997. DOI: 10.1016/S0735-1933(97)00090-0.
  • P. N. Kaloni and Z. Qiao, “Nonlinear stability of convection in a porous medium with inclined temperature gradient,” Int. J. Heat Mass Transf., vol. 40, no. 7, pp. 1611–1615, 1997. DOI: 10.1016/S0017-9310(96)00204-9.
  • C. J. V. Duijn, R. A. Wooding, G. J. M. Pieters and A. V. D. Ploeg, “Stability criteria for the boundary layer formed by throughflow at a horizontal surface of a porous medium, environmental mechanics: water, mass and energy transfer in the biosphere,” Geophys. Monogr., vol. 129, pp. 155–169, 2002. DOI: 10.1029/129GM15.
  • J. Guo and P. N. Kaloni, “Nonlinear stability and convection induced by inclined thermal and solutal gradients,” Z. Angew. Math. Phys., vol. 46, pp. 645–654, 1995. DOI: 10.1007/BF00949071.
  • P. N. Kaloni and Z. Qiao, “Nonlinear convection induced by inclined thermal and solutal gradients with mass flow,” Contin. Mech. Thermodyn., vol. 12, pp. 185–194, 2000. DOI: 10.1007/s001610050134.
  • P. N. Kaloni and Z. Qiao, “Nonlinear convection in a porous medium with inclined temperature gradient and variable gravity effects,” Int. J. Heat Mass Transf., vol. 44, no. 8, pp. 1585–1591, 2001. DOI: 10.1016/S0017-9310(00)00196-4.
  • P. N. Kaloni and J. X. Lou, “Nonlinear convection of a viscoelastic fluid with inclined temperature gradient,” Contin. Mech. Thermodyn., vol. 17, pp. 17–27, 2005. DOI: 10.1007/s00161-004-0184-2.
  • A. Matta, P. A. L. Narayana and A. A. Hill, “Double diffusive Hadley-Prats flow in a horizontal porous layer with a concentration based internal heat source,” J. Math. Anal. Appl., vol. 452, no. 2, pp. 1005, 2017. DOI: 10.1016/j.jmaa.2017.03.039.
  • A. Matta, P. A. L. Narayana and A. A. Hill, “Double diffusive Hadley-Prats flow in a porous medium subject to gravitational variation,” Int. J. Thermal Sci., vol. 102, pp. 300–307, 2016. DOI: 10.1016/j.ijthermalsci.2015.10.034.
  • A. Matta, P. A. L. Narayana and A. A. Hill, “Nonlinear thermal instability in a horizontal porous layer with an internal heat source and mass flow,” Acta Mech., vol. 227, no. 6, pp. 1743–1751, 2016. DOI: 10.1007/s00707-016-1591-8.
  • A. Matta and P. A. L. Narayana, “Effect of variable gravity on linear and nonlinear stability of double diffusive Hadley flow in porous media,” J. Por. Media, vol. 19, no. 4, pp. 287–301, 2016. DOI: 10.1615/JPorMedia.v19.i4.10.
  • M. K. V. Rafeek, G. J. Reddy, A. Matta and O. A. Bég, “Computation of internal heat source, viscous dissipation and mass flow effects on mono-diffusive thermo-convective stability in a horizontal porous medium layer,” Spec,” Top. Rev. Porous Media, vol. 14, no. 1, pp. 17–28, 2023. DOI: 10.1615/SpecialTopicsRevPorousMedia.2022043848.
  • K. V. M. Rafeek, G. J. Reddy, A. Matta, H. Basha and O. A. Bég, “Numerical study of linear and nonlinear stability in double-diffusive Hadley-Prats flow through a horizontal porous layer with Soret and internal heat source effects,” Numerical Heat Transfer, Part B: Fundament., vol. 85, no. 4, pp. 1–24, 2024. DOI: 10.1080/10407790.2024.2316841.
  • K. V. M. Rafeek, G. J. Reddy, A. Matta, H. Basha and O. A. Bég, “Double-diffusive thermosolutal Hadley–Prats flow: stability analysis,” Int. J. Model. Simul., vol. 44, pp. 1–17, 2024. DOI: 10.1080/02286203.2024.2327636.
  • I. B. Simanovskii, A. Viviani, F. Dubois and J. C. Legros, “Standing oscillations and traveling waves in two—layer systems with an inclined temperature gradient,” Microgravity Sci. Technol., vol. 26, no. 5, pp. 279–291, 2014. DOI: 10.1007/s12217-014-9366-0.
  • Z. Alloui, Y. Alloui and P. Vasseur, “Control of Rayleigh-B’enard convection in a fluid layer with internal heat generation,” Microgravity Sci. Technol., vol. 30, no. 6, pp. 885–897, 2018. DOI: 10.1007/s12217-018-9651-4.
  • V. R. Dushin, V. F. Nikitin, N. N. Smirnov, E. I. Skryleva and V. V. Tyurenkova, “Microgravity investigation of capillary driven imbibition,” Microgravity Sci. Technol., vol. 30, no. 4, pp. 393–398, 2018. DOI: 10.1007/s12217-018-9623-8.
  • A. Matta, “On the stability of Hedley-flow in a horizontal porous layer with non-uniform thermal gradient and internal heat source,” Microgravity Sci. Technol., vol. 31, no. 2, pp. 169–175, 2019. DOI: 10.1007/s12217-019-9676-3.
  • A. Selvam, et al., “Ulam-Hyers stability of tuberculosis and COVID-19 co-infection model under Atangana-Baleanu fractal-fractional operator,” Sci. Rep., vol. 13, no. 1, pp. 9012, 2023. DOI: 10.1038/s41598-023-35624-4.
  • M. Sivashankar, S. Sabarinathan, V. Govindan, U. F. Gamiz and S. Noeiaghdam, “Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional differential equation,” MATH, vol. 8, no. 2, pp. 2720–2735, 2023. DOI: 10.3934/math.2023143.
  • B. Straughan, “The Energy Method, Stability, and Nonlinear Convection,” 2nd ed., New York: Springer, 2004, DOI: 10.1007/978-0-387-21740-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.