36
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrothermal performance of hybrid nanofluid flow over an exponentially stretching sheet influenced by gyrotactic microorganisms: A comparative evaluation of Yamada-Ota and Xue models

ORCID Icon
Received 17 Mar 2024, Accepted 29 May 2024, Published online: 12 Jun 2024

References

  • C. Y. Wang, “Fluid flow due to a stretching cylinder,” Phys. Fluid., vol. 31, no. 3, pp. 466–468, 1988. DOI: 10.1063/1.866827.
  • E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface,” J. Phys. D: Appl. Phys., vol. 32, no. 5, pp. 577–585, 1999. DOI: 10.1088/0022-3727/32/5/012.
  • S. U. Choi and J. A. Eastman, “Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29),” Argonne National Lab. (ANL), Argonne, IL (United States), 1995,
  • P. S. A. Reddy and A. Chamkha, “Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water-based alumina nanofluid,” Int. J. Num. Meth. Heat Fluid Flow, vol. 28, no. 3, pp. 532–546, 2018.
  • T. Srinivasulu and B. S. Goud, “Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet,” Case Study Therm. Eng., vol. 23, pp. 100819, 2021. DOI: 10.1016/j.csite.2020.100819.
  • Y. D. Reddy and B. S. Goud, “MHD heat and mass transfer stagnation point nanofluid flow along a stretching sheet influenced by thermal radiation,” J. Therm. Anal. Calorim., vol. 147, no. 21, pp. 11991–12003, 2022. DOI: 10.1007/s10973-022-11430-4.
  • S. Sadighi, H. Afshar, M. Jabbari and H. A. D. Ashtiani, “Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions,” Case Study Therm. Eng., vol. 49, pp. 103345, 2023. DOI: 10.1016/j.csite.2023.103345.
  • M. Ramzan, N. Shahmir, H. A. S. Ghazwani, Y. Elmasry and S. Kadry, “A numerical study of nanofluid flow over a curved surface with Cattaneo–Christov heat flux influenced by induced magnetic field,” Num. Heat Transf., Part A Appl., vol. 83, no. 2, pp. 197–212, 2023.
  • I. Waini, A. Ishak and I. Pop, “Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid,” Int. J. Heat Mass Transf., vol. 136, pp. 288–297, 2019.
  • P. Sreedevi, P. S. Reddy and A. Chamkha, “Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation,” S. N. App. Sci., vol. 2, no. 7, pp. 1222, 2020.
  • P. Nanda, N. Sandeep, C. Sulochana and G. P. Ashwinkumar, “Enhanced heat transmission in methanol-based AA7072/AA7075 tangent hyperbolic hybrid nanofluid flow along a nonlinear expandable surface,” Num. Heat Transf., Part A: Appl., vol. 83, no. 7, pp. 711–725, 2023.
  • M. Arshad, et al., “Effect of inclined magnetic field on radiative heat and mass transfer in chemically reactive hybrid nanofluid flow due to dual stretching,” Sci. Rep., vol. 13, no. 1, pp. 7828, 2023. DOI: 10.1038/s41598-023-34871-9.
  • T. Hayat, S. Nadeem and A. U. Khan, “Aspects of 3D rotating hybrid CNT flow for a convective exponentially stretched surface,” Appl. Nanosci., vol. 10, no. 8, pp. 2897–2906, 2020. DOI: 10.1007/s13204-019-01036-y.
  • K. K. Naidu, D. H. Babu, V. S. N. Panyam, S. H. Reddy and T. Chalapathi, “Convective flow of Prandtl hybrid nanofluid (SWCNT-MWCNT/EG) over an exponentially elongated sheet with second-order slip,” J. Porous Med., vol. 25, no. 12, pp. 43–57, 2022.
  • A. Manigandan and P. V. Satya Narayana, “Influence of variable thermal conductivity and mixed convection on hybrid nanofluid (SWCNT + MWCNT/H2O) flow over an exponentially elongated sheet with slip conditions,” Indian J. Phys., pp. 1–14, 2023.
  • E. Tayari, L. Torkzadeh, D. D. Ganji and K. Nouri, “Investigation of hybrid nanofluid SWCNT–MWCNT with the collocation method based on radial basis functions,” European Phys. J. Plus., vol. 138, no. 1, pp. 3, 2023.
  • P. M. Patil and B. Goudar, “Single and multiple walled CNTs-TiO2 ternary hybrid nanofluid flow of Williamson fluid in an unsteady combined convective regime: an entropy analysis,” Num. Heat Transf., Part A Appl., vol. 84, no. 10, pp. 1216–1237, 2023.
  • M. S. Alqarni, H. Waqas, S. Yasmin and T. Muhammad, “Numerical simulation for magnetized transport of hybrid nanofluids with exponential space-based heat source,” Int. J. Modern Phys. B, vol. 35, no. 29, pp. 2150292, 2021.
  • T. P. Kumar, “Heat transfer of SWCNT-MWCNT based hybrid nanofluid boundary layer flow with modified thermal conductivity model,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 92, no. 2, pp. 13–24, 2022.
  • A. Subramanyam Reddy, T. Thamizharasan, B. Rushi Kumar, V. Ramachandra Prasad and K. Jagadeshkumar, “A comparative study on pulsating flow of Au + SWCNT/blood and Au + MWCNT/blood based Jeffrey hybrid nanofluid in a vertical porous channel with entropy generation,” Num. Heat Transf., Part A: Appl., pp. 1–17, 2023. DOI: 10.1080/10407782.2023.2226349.
  • D. Pal, “Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field,” Appl. Math. Comput., vol. 217, no. 6, pp. 2356–2369, 2010. DOI: 10.1016/j.amc.2010.07.035.
  • D. Pal and S. K. Mondal, “Influence of chemical reaction and nonlinear thermal radiation on bioconvection of nanofluid containing gyrotactic microorganisms with magnetic field,” BioNanoSci., vol. 8, no. 4, pp. 1065–1080, 2018. DOI: 10.1007/s12668-018-0555-y.
  • T. S. Neethu, A. S. Sabu, A. Mathew, A. Wakif and S. Areekara, “Multiple linear regression on bioconvective MHD hybrid nanofluid flow past an exponential stretching sheet with radiation and dissipation effects,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106115, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106115.
  • A. S. Khan, H. Y. Xu, and W. Khan, “Magnetohydrodynamic hybrid nanofluid flow past an exponentially stretching sheet with slip conditions,” Math., vol. 9, no. 24, p. 3291, 2021.
  • S. A. Lone, M. D. Shamshuddin, S. Shahab, S. Iftikhar, A. Saeed and A. M. Galal, “Computational analysis of MHD driven bioconvective flow of hybrid Casson nanofluid past a permeable exponential stretching sheet with thermophoresis and Brownian motion effects,” J. Magn. Magn. Mater, vol. 580, pp. 170959, 2023. DOI: 10.1016/j.jmmm.2023.170959.
  • G. Mandal and D. Pal, “Estimation of entropy generation and heat transfer of magnetohydrodynamic quadratic radiative Darcy–Forchheimer cross hybrid nanofluid (GO + Ag/kerosene oil) over a stretching sheet,” Num. Heat Trans., Part A Appl., vol. 84, no. 8, pp. 853–876, 2023.
  • R. A. Damseh, “Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect,” Int. J. Appl. Mech. Eng., vol. 11, no. 2, pp. 289–299, 2006.
  • N. A. Zainal, R. Nazar, K. Naganthran and I. Pop, “Heat generation/absorption effect on MHD flow of hybrid nanofluid over bidirectional exponential stretching/shrinking sheet,” Chinese J. Phys., vol. 69, pp. 118–133, 2021.
  • B. Ishtiaq, A. M. Zidan, S. Nadeem and M. K. Alaoui, “Scrutinization of MHD stagnation point flow in hybrid nanofluid based on the extended version of Yamada-Ota and Xue models,” Ain Shams Eng. J., vol. 14, no. 3, pp. 101905, 2023. DOI: 10.1016/j.asej.2022.101905.
  • H. Waqas, U. Farooq, D. Liu, M. Abid, M. Imran and T. Muhammad, “Heat transfer analysis of hybrid nanofluid flow with thermal radiation through a stretching sheet: a comparative study,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106303, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106303.
  • V. K. Patel, J. U. Pandya and M. R. Patel, “Testing the influence of TiO2− Ag/water on hybrid nanofluid MHD flow with effect of radiation and slip conditions over exponentially stretching & shrinking sheets,” J. Magn. Magn. Mater, vol. 572, pp. 170591, 2023. DOI: 10.1016/j.jmmm.2023.170591.
  • A. Rashid, M. Ayaz, S. Islam, A. Saeed, P. Kumam and P. Suttiarporn, “Theoretical analysis of the MHD flow of a tangent hyperbolic hybrid nanofluid over a stretching sheet with convective conditions: a nonlinear thermal radiation case,” South African J. Chem. Eng., vol. 42, pp. 255–269, 2022.
  • K. A. M. Alharbi, et al., “Numerical solution of Maxwell-Sutterby nanofluid flow inside a stretching sheet with thermal radiation, exponential heat source/sink, and bioconvection,” Int. J. Thermofl., vol. 18, pp. 100339, 2023. DOI: 10.1016/j.ijft.2023.100339.
  • A. J. Chamkha, A. S. Dogonchi and D. D. Ganji, “Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating,” AIP Adv., vol. 9, no. 2 2019.
  • A. Mishra and M. Kumar, “Thermal performance of MHD nanofluid flow over a stretching sheet due to viscous dissipation, Joule heating and thermal radiation,” Int. J. Appl. Comp. Math., vol. 6, no. 4, pp. 123, 2020.
  • N. Vijay and K. Sharma, “Entropy generation analysis in MHD hybrid nanofluid flow: effect of thermal radiation and chemical reaction,” Num. Heat Transf., Part B: Fund., vol. 84, no. 1, pp. 66–82, 2023.
  • A. Mishra and H. Upreti, “Computational analysis of radiative nanofluid flow past an inclined cylinder with slip effects using the Yamada–Ota model,” Num. Heat Transf., Part A: Appl., pp. 1–19, 2023.
  • N. S. Wahid, N. M. Arifin, N. S. Khashi’ie and I. Pop, “Mixed convection MHD hybrid nanofluid over a shrinking permeable inclined plate with thermal radiation effect,” Alexandria Eng. J., vol. 66, pp. 769–783, 2023.
  • S. Rao and P. N. Deka, “A study on MHD flow of SWCNT-Al2O3/water hybrid nanofluid past a vertical permeable cone under the influence of thermal radiation and chemical reactions,” Num. Heat Transf., Part A: Appl., pp. 1–21, 2023.
  • E. Yamada and T. Ota, “Effective thermal conductivity of dispersed materials,” Wärme-Und Stoffübertragung, vol. 13, no. 1-2, pp. 27–37, 1980.
  • L. F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with Matlab. Cambridge: Cambridge University Press, 2003,

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.