22
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analytical modeling of desublimation of a phase change material (PCM) in a porous medium with temperature-dependent volumetric heat sink and convection due to air-mixed vapor

ORCID Icon
Received 25 Jan 2024, Accepted 29 May 2024, Published online: 17 Jun 2024

References

  • A. Martínez-Benítez, et al., “On the chemical bath deposition of the ternary compound ZnxHg1-xS,” Opt. Mater., vol. 124, pp. 111983, 2022. DOI: 10.1016/j.optmat.2022.111983.
  • P. Materna, D. Illek, K. Unger, M. Thonhofer, T. M. Wrodnigg and A. M. Coclite, “Chemical vapor deposition of carbohydrate-based polymers: a proof of concept study,” Monatsh. Chem., vol. 154, no. 5, pp. 533–541, 2023. DOI: 10.1007/s00706-022-03015-6.
  • V. Chaurasiya, A. Wakif, N. A. Shah and J. Singh, “A study on cylindrical moving boundary problem with variable thermal conductivity and convection under the most realistic boundary conditions,” Int. Communi. Heat. Mass. Transf., vol. 138, pp. 106312, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106312.
  • V. Chaurasiya, S. Upadhyay, K. N. Rai and J. Singh, “A new look in heat balance integral method to a two-dimensional Stefan problem with convection,” Num. Heat. Transf. Part A: applic, vol. 82, no. 9, pp. 529–542, 2022. DOI: 10.1080/10407782.2022.2079829.
  • F. Font, “A one-phase Stefan problem with size-dependent thermal conductivity,” Appl. Math. Modell., vol. 63, pp. 172–178, 2018. DOI: 10.1016/j.apm.2018.06.052.
  • A. Chibani, S. Merouani, G. Mecheri, A. Dehane and D. Guerraiche, “Thermal characteristics of metal foams proportion on heat transfer enhancement in the melting and solidification process of phase change materials,” Num. Heat. Transf. Part B: fundam., vol. 84, no. 6, pp. 689–705, 2023. DOI: 10.1080/10407790.2023.2219833.
  • J. G. Plascencia, E. Bird and Z. Liang, “Thermal and mass transfer resistance at a liquid-gas interface of an evaporating droplet: a molecular dynamics study,” Int. J. Heat. Mass. Transf., vol. 192, pp. 122867, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122867.
  • Y. Yan, et al., “Operating mechanism of pulsating heat pipe with different wettability from the perspective of thermo-hydrodynamic characteristics of vapor–liquid interface region,” Num. Heat. Transf. Part A: Applic., pp. 1–26, 2024. DOI: 10.1080/10407782.2024.2332473.
  • V. Chaurasiya and J. Singh, “An analytical study of coupled convective heat and mass transfer with volumetric heating describing sublimation of a porous body under most sensitive temperature inputs: application of freeze-drying,” Int. J. Heat. Mass. Transf., vol. 214, pp. 124294, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.124294.
  • V. Chaurasiya, A. Jain and J. Singh, “Numerical study of a non-linear porous sublimation problem with temperature-dependent thermal conductivity and concentration-dependent mass diffusivity,” ASME. J. Heat. Mass. Transf, vol. 145, no. 7, pp. 072701, 2023. DOI: 10.1115/1.4057024.
  • J. Cho, J. Kim and M. Choi, “An experimental study of heat transfer and particle deposition during the outside vapor deposition process,” Int. J. Heat. Mass. Transf., vol. 41, no. 2, pp. 435–445, 1998. DOI: 10.1016/S0017-9310(97)00139-7.
  • P. Slapnig and G. Krammer, “Starch powder in short air contact time: material moisture change, stickiness and deposition at different air relative humidity and temperature,” J. Food. Eng., vol. 376, pp. 112078, 2024. DOI: 10.1016/j.jfoodeng.2024.112078.
  • E. Ragupathi, D. Prakash, M. Muthtamilselvan, Q. M. Al-Mdallal and I. Kim, “Thermophoretic particle deposition in a nanofluid flow across a disc with non-Fourier heat flux: an investigation using tangent hyperbolic model,” Num. Heat. Transf. Part A: Applic., pp. 1–30, 2024. DOI: 10.1080/10407782.2024.2327641.
  • H. Hu, Y. Liu and L. Gao, Wind Turbine Icing Physics and anti-/De-Icing Technology (Wind Energy Engineering), United Kingdom: Academic Press, 2022, DOI: 10.1016/C2020-0-01512-4.
  • S. Sengodan, et al., “Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications,” Renew. Sust. Ener. Reviews., vol. 82, pp. 761–780, 2018. DOI: 10.1016/j.rser.2017.09.071.
  • M. A. Hastaoglu and C. A. Baah, “Desublimation: a moving boundary problem and numericalsolution,” Num. Heat Transf. Part A: Applic., vol. 19, no. 2, pp. 219–236, 1991. DOI: 10.1080/10407789108944847.
  • M. D. Mikhailov, “Exact solution of temperature and moisture distributions in a porous half-space with moving evaporation front,” Int. J. Heat. Mass. Transf., vol. 18, no. 6, pp. 797–804, 1975. DOI: 10.1016/0017-9310(75)90209-4.
  • S. Lin, “An exact solution of the sublimation problem in a porous half-space,” ASME. J. Heat. Mass. Transf., vol. 103, no. 1, pp. 165–168, 1981. DOI: 10.1115/1.3244413.
  • S. Lin, “An exact solution of the desublimation problem in a porous medium,” Int. J. Heat. Mass. Transf., vol. 25, no. 5, pp. 625–630, 1982. DOI: 10.1016/0017-9310(82)90167-3.
  • R. Krupiczka and J. Pyschny, “Mathematical modelling of the desublimation of phthalic anhydride,” Chem. Eng. Proces.: Proces. Intensif., vol. 28, no. 1, pp. 29–34, 1990. DOI: 10.1016/0255-2701(90)85023-W.
  • K. N. Rai and S. Rai, “Approximate closed form analytical solution of the desublimation problem in a porous medium,” Int. J. Energy. Res., vol. 19, no. 4, pp. 279–288, 1995. DOI: 10.1002/er.4440190402.
  • B. Bansal, X. D. Chen and H. Müller-Steinhagen, “Analysis of classical deposition rate law for crystallisation fouling,” Chem. Eng. Proces.: Proces. Intensif., vol. 47, no. 8, pp. 1201–1210, 2008. DOI: 10.1016/j.cep.2007.03.016.
  • Y. F. Yap, F. M. Vargas and J. C. Chai, “A level-set method for convective–diffusive particle deposition,” Appl. Math. Modell., vol. 37, no. 7, pp. 5245–5259, 2013. DOI: 10.1016/j.apm.2012.10.039.
  • C. Y. Hsiao, W. J. Chang, M. I. Char and B. C. Tai, “Influence of thermophoretic particle deposition on MHD free convection flow of non-Newtonian fluids from a vertical plate embedded in porous media considering Soret and Dufour effects,” Appl. Math. Computat., vol. 244, pp. 390–397, 2014. DOI: 10.1016/j.amc.2014.07.007.
  • J. Lee and K. S. Lee, “The behavior of frost layer growth under conditions favorable for desublimation,” Int. J. Heat. Mass. Transf., vol. 120, pp. 259–266, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.039.
  • Y. N. Wang, J. M. Pfotenhauer, X. Q. Zhi, L. M. Qiu and J. F. Li, “Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture,” Int. J. Heat. Mass. Transf., vol. 127, pp. 339–347, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.068.
  • C. Shengnan, L. Jizu, W. Peng, H. Chengzhi and B. Minli, “Numerical investigation on the influence of particle deposition on nanofluid turbulent flow and heat transfer characteristics,” Int. Communi. Heat. Mass. Transf., vol. 126, pp. 105466, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105466.
  • A. Bakhta and J. Vidal, “Modeling and optimization of the fabrication process of thin-film solar cells by multi-source physical vapor deposition,” Math. Comput. Simul., vol. 185, pp. 115–133, 2021. DOI: 10.1016/j.matcom.2020.12.016.
  • T. Lei, et al., “Study of CO2 desublimation during cryogenic carbon capture using the lattice Boltzmann method,” J. Fluid. Mech., vol. 964, pp. A1, 2023. DOI: 10.1017/jfm.2023.227.
  • Y. Meng, et al., “Spontaneous desublimation of carbon dioxide in turbo-expander applied for cryogenic carbon capture,” Int. Communi. Heat. Mass. Transf., vol. 140, pp. 106528, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106528.
  • S. Shahane, Y. Shen and S. Wang, “Numerical simulations of frost growth using mixture model on surfaces with different wettability,” Num. Heat Transf. Part A: Applic., vol. 84, no. 12, pp. 1494–1517, 2023. DOI: 10.1080/10407782.2023.2176955.
  • J. Wang, J. Wang, L. Xie, F. Peng and L. Shi, “Analysis of frost layer growth behavior on cryogenic surfaces in ultralow dew point environments by experimental tests and numerical simulations,” Int. Communi. Heat. Mass. Transf., vol. 154, pp. 107415, 2024. DOI: 10.1016/j.icheatmasstransfer.2024.107415.
  • V. Chaurasiya, A. Jain and J. Singh, “Analytical study of a moving boundary problem describing sublimation process of a humid porous body with convective heat and mass transfer,” J. Therm. Anal. Calorim., vol. 148, no. 6, pp. 2567–2584, 2023. DOI: 10.1007/s10973-022-11906-3.
  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Washington D.C.: Dover Publications Inc., 1965,
  • K. Aomoto and M. Kita, Theory of Hypergeometric Functions, London, New York: Springer Tokyo, 2011, DOI: 10.1007/978-4-431-53938-4.
  • M. Abramowitz, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Mineola, NY United States: Dover Publications, Inc, 1974,
  • S. A. Rackley, Carbon Capture and Storage, 2nd ed. USA: Elsevier, 2017,

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.