19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational study of micropolar Eyrling-Powell ferrofluid flow

, , &
Received 22 Mar 2024, Accepted 02 Jun 2024, Published online: 21 Jun 2024

References

  • D.-C. Lu, M. Ramzan, M. Bilal, J. Dong Chung, and U. Farooq, “A numerical investigation of 3d MHD rotating flow with binary chemical reaction, activation energy and non-Fourier heat flux,” Commun. Theor. Phys., vol. 70, no. 1, pp. 089, Jul. 2018. DOI: 10.1088/0253-6102/70/1/89.
  • M. Naveed Khan et al., “Chemically reactive aspects of stagnation-point boundary layer flow of second-grade nanofluid over an exponentially stretching surface,” Numer. Heat Transf. Part B Fundam. pp. 1–17, 2024. DOI: 10.1080/10407790.2024.2318456.
  • A. Cemal Eringen, “Theory of micropolar fluids,” J. Math. Mech. vol. 16, pp. 1–18, 1966.
  • R. Bhargava and H. S. Takhar, “Numerical study of heat transfer characteristics of the micropolar boundary layer near a stagnation point on a moving wall,” Int. J. Eng. Sci., vol. 38, no. 4, pp. 383–394, 2000. DOI: 10.1016/S0020-7225(99)00051-8.
  • N. N. Anika, M. M. Hoque, S. I. Hossain, and M. M. Alam, “Thermal diffusion effect on unsteady viscous MHD micropolar fluid flow through an infinite vertical plate with hall and ion-slip current,” Proc. Eng., vol. 105, pp. 160–166, 2015. DOI: 10.1016/j.proeng.2015.05.052.
  • R. Bhargava, S. Sharma, H. S. S. Takhar, O. A. A. Bég, and P. Bhargava, “Numerical solutions for micropolar transport phenomena over a nonlinear stretching sheet,” NAMC, vol. 12, no. 1, pp. 45–63, 2007. DOI: 10.15388/NA.2007.12.1.14721.
  • H. S. Takhar, R. S. Agarwal, R. Bhargava, and S. Jain, “Mixed convection flow of a micropolar fluid over a stretching sheet,” Heat Mass Transf., vol. 34, no. 2-3, pp. 213–219, 1998. DOI: 10.1007/s002310050252.
  • R. Bhargava and P. Rana, “Finite element solution to mixed convection in MHD flow of micropolar fluid along a moving vertical cylinder with variable conductivity,” Int. J. Appl. Math. Mech., vol. 7, pp. 29–51, 2011.
  • S. Bilal, K. U. Rehman, H. Jamil, M. Y. Malik, and T. Salahuddin, “Dissipative slip flow along heat and mass transfer over a vertically rotating cone by way of chemical reaction with Dufour and Soret effects,” AIP Adv., vol. 6, no. 12, pp. 125125, 2016. DOI: 10.1063/1.4973307.
  • T. Kebede, E. Haile, G. Awgichew, and T. Walelign, “Heat and mass transfer analysis in unsteady flow of tangent hyperbolic nanofluid over a moving wedge with buoyancy and dissipation effects,” Heliyon, vol. 6, no. 4, pp. e03776, 2020. DOI: 10.1016/j.heliyon.2020.e03776.
  • E. Seid, E. Haile, and T. Walelign, “Multiple slip, Soret and Dufour effects in fluid flow near a vertical stretching sheet in the presence of magnetic nanoparticles,” Int. J. Thermofluids, vol. 13, pp. 100136, 2022. DOI: 10.1016/j.ijft.2022.100136.
  • T. Walelign, E. Haile, T. Kebede, and A. Walelgn, “Analytical study of heat and mass transfer in MHD flow of chemically reactive and thermally radiative Casson nanofluid over an inclined stretching cylinder,” J. Phys. Commun., vol. 4, no. 12, pp. 125003, 2020. DOI: 10.1088/2399-6528/abcdba.
  • T. Walelign, “Rates of heat, mass and momentum transfer in a magnetic nanofluid near cylindrical surface with velocity slip and convective heat transfer,” Heliyon, vol. 10, no. 6, pp. e27675, 2024. DOI: 10.1016/j.heliyon.2024.e27675.
  • T. Walelign, E. Haile, T. Kebede, and G. Awgichew, “Heat and mass transfer in stagnation point flow of maxwell nanofluid towards a vertical stretching sheet with effect of induced magnetic field,” Math. Probl. Eng., vol. 2021, pp. 1–15, 2021. DOI: 10.1155/2021/6610099.
  • T. Kebede, E. Haile, G. Awgichew, and T. Walelign, “Heat and mass transfer in unsteady boundary layer flow of Williamson nanofluids,” J. Appl. Math., vol. 2020, pp. 1–13, 2020. DOI: 10.1155/2020/1890972.
  • I. H. Qureshi, M. Nawaz, S. Rana, and T. Zubair, “Galerkin finite element study on the effects of variable thermal conductivity and variable mass diffusion conductance on heat and mass transfer,” Commun. Theor. Phys., vol. 70, no. 1, pp. 049, 2018. DOI: 10.1088/0253-6102/70/1/49.
  • M. M. Rashidi, M. Ali, B. Rostami, P. Rostami, and G.-N. Xie, “Heat and mass transfer for MHD viscoelastic fluid flow over a vertical stretching sheet with considering Soret and Dufour effects,” Math. Probl. Eng., vol. 2015, pp. 1–12, 2015. DOI: 10.1155/2015/861065.
  • A. R. Bestman, “Radiative heat transfer to flow of a combustible mixture in a vertical pipe,” Int. J. Energy Res., vol. 15, no. 3, pp. 179–184, 1991. DOI: 10.1002/er.4440150305.
  • Z. Shafique, M. Mustafa, and A. Mushtaq, “Boundary layer flow of maxwell fluid in rotating frame with binary chemical reaction and activation energy,” Res. Phys., vol. 6, pp. 627–633, 2016. DOI: 10.1016/j.rinp.2016.09.006.
  • N. Ahsan, M. Nauman Aslam, M. Naveed Khan, and I. E. Elseesy, “Thermal features of darcy-Forchheimer on a micropolar fluid flow over a curved stretching surface with homogenous-heterogeneous reactions,” Numer. Heat Transf. Part A Appl., pp. 1–15, 2023. DOI: 10.1080/10407782.2023.2251082.
  • F. G. Awad, S. Motsa, and M. Khumalo, “Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy,” PLoS One, vol. 9, no. 9, pp. e107622, 2014. DOI: 10.1371/journal.pone.0107622.
  • A. Ashraf, Z. Zhang, T. Saeed, H. Zeb, and T. Munir, “Convective heat transfer analysis for aluminum oxide (Al2O3)-and ferro (Fe3O4)-based nano-fluid over a curved stretching sheet,” Nanomaterials, vol. 12, no. 7, pp. 1152, 2022. DOI: 10.3390/nano12071152.
  • N. Kishan, C. Kalyani, and M. C. K. Reddy, “Mhd boundary layer flow of a nanofluid over an exponentially permeable stretching sheet with radiation and heat source/sink,” Transp. Phenom. Nano Micro Scales, vol. 4, no. 1, pp. 44–51, 2016.
  • M. Mustafa, J. A. Khan, T. Hayat, and A. Alsaedi, “Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy,” Int. J. Heat Mass Transf., vol. 108, pp. 1340–1346, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.029.
  • J. H. Merkin, “A model for isothermal homogeneous-heterogeneous reactions in boundary-layer flow,” Math. Comput. Modell., vol. 24, no. 8, pp. 125–136, 1996. DOI: 10.1016/0895-7177(96)00145-8.
  • A. Chaves, M. Zahn, and C. Rinaldi, “Spin-up flow of ferrofluids: asymptotic theory and experimental measurements,” Phys. Fluids, vol. 20, no. 5, pp. 053102, 2008. DOI: 10.1063/1.2907221.
  • A. M. Siddiqui, T. Haroon, and M. Zeb, “Analysis of Eyring-Powell fluid in helical screw rheometer,” Sci. World J., vol. 2014, pp. 1–14, 2014. DOI: 10.1155/2014/143968.
  • T. Hayat, M. Awais, and S. Asghar, “Radiative effects in a three-dimensional flow of MHD Eyring-Powell fluid,” J. Egyptian Math. Soc., vol. 21, no. 3, pp. 379–384, 2013. DOI: 10.1016/j.joems.2013.02.009.
  • N. Kousar, T. A. Nofal, W. Tahir, S. M. Bilal, and N. Sene, “Impact of ferromagnetic nanoparticles submerged in chemically reactive viscoelastic fluid transport influenced by double magnetic dipole,” J. Nanomater., vol. 2022, pp. 1–12, 2022. DOI: 10.1155/2022/2558419.
  • S. Rosseland, Astrophysik and Atom-Theorestischegrundlagen. Berlin: Springer, 1993.
  • C.-H. Chen, “Laminar mixed convection adjacent to vertical, continuously stretching sheets,” Heat Mass Transf., vol. 33, no. 5-6, pp. 471–476, 1998. DOI: 10.1007/s002310050217.
  • A. Zeeshan, A. Majeed, and R. Ellahi, “Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation,” J. Mol. Liq., vol. 215, pp. 549–554, 2016. DOI: 10.1016/j.molliq.2015.12.110.
  • E. Sharifah et al., “Effects of homogeneous-heterogeneous reactions on maxwell ferrofluid in the presence of magnetic dipole along a stretching surface: a numerical approach,” Nanofluids Entropy Anal. Electroosmotic Phenom., Boca Raton, vol. 2022, 2022.
  • I. Khan, M. Y. Malik, T. Salahuddin, M. Khan, and K. U. Rehman, “Homogenous–heterogeneous reactions in MHD flow of Powell–Eyring fluid over a stretching sheet with Newtonian heating,” Neural Comput. Appl., vol. 30, no. 11, pp. 3581–3588, 2018. DOI: 10.1007/s00521-017-2943-6.
  • R. S. Esfandiari, Numerical Methods for Engineers and Scientists Using MATLAB. CRC Press, 2013, pp. 1–13.
  • T. Javed, N. Ali, Z. Abbas, and M. Sajid, “Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet,” Chem. Eng. Commun., vol. 200, no. 3, pp. 327–336, 2013. DOI: 10.1080/00986445.2012.703151.
  • M. Waqas, S. Jabeen, T. Hayat, S. A. Shehzad, and A. Alsaedi, “Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy,” Int. Commun. Heat Mass Transf., vol. 112, pp. 104401, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104401.
  • A. Ishak, R. Nazar, and I. Pop, “Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet,” Heat Mass Transf., vol. 44, no. 8, pp. 921–927, 2008. DOI: 10.1007/s00231-007-0322-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.