23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of variation in gap spacing and orientation of split baffles on thermodynamics optimization in naturally convective flow in corrugated enclosure

ORCID Icon, ORCID Icon, , ORCID Icon &
Received 25 Mar 2024, Accepted 04 Jun 2024, Published online: 19 Jun 2024

References

  • M. Hasnaoui, E. Bilgen, and P. Vasseur, “Natural convection heat transfer in rectangular cavities partially heated from below,” J. Thermophys. Heat Transfer, vol. 6, no. 2, pp. 255–264, 1992. DOI: 10.2514/3.353.
  • I. Miroshnichenko and M. A. Sheremet, “Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review,” Renew. Sustain. Energy Rev., vol. 82, pp. 40–59, 2018. DOI: 10.1016/j.rser.2017.09.005.
  • E. Bilgen and H. Oztop, “Natural convection heat transfer in partially open inclined square cavities,” Int. J. Heat Mass Transf., vol. 48, no. 8, pp. 1470–1479, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.020.
  • H. Manz, “Numerical simulation of heat transfer by natural convection in cavities of facade elements,” Energ. Build., vol. 35, no. 3, pp. 305–311, 2003. DOI: 10.1016/S0378-7788(02)00088-9.
  • A. Raji, M. Hasnaoui, M. Naïmi, K. Slimani, and M. T. Ouazzani, “Effect of the subdivision of an obstacle on the natural convection heat transfer in a square cavity,” Comput. Fluids, vol. 68, pp. 1–15, 2012. DOI: 10.1016/j.compfluid.2012.07.014.
  • M. K. Das and K. S. K. Reddy, “Conjugate natural convection heat transfer in an inclined square cavity containing a conducting block,” Int. J. Heat Mass Transf., vol. 49, nos. 25–26, pp. 4987–5000, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.041.
  • S. Saha, T. Sultana, G. Saha, and M. M. Rahman, “Effects of discrete isoflux heat source size and angle of inclination on natural convection heat transfer flow inside a sinusoidal corrugated enclosure,” Int. Commun. Heat Mass Transf., vol. 35, no. 10, pp. 1288–1296, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.08.005.
  • R. U. Haq, F. A. Soomro, T. Mekkaoui, and Q. M. Al-Mdallal, “MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium,” Int. J. Heat Mass Transf., vol. 121, pp. 1168–1178, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.063.
  • S. Dutta, S. Pati, and A. K. Biswas, “Thermal transport analysis for natural convection in a porous corrugated rhombic enclosure,” Heat Transf., vol. 49, no. 6, pp. 3287–3313, 2020. DOI: 10.1002/htj.21774.
  • A. Sojoudi, S. C. Saha, M. Khezerloo, and Y. T. Gu, “Unsteady natural convection within a porous enclosure of sinusoidal corrugated side walls,” Transp. Por. Media, vol. 104, pp. 537–552, 2014. DOI: 10.1007/s11242-014-0347-y.
  • S. Bhardwaj, A. Dalal, and S. J. E. Pati, “Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure,” Energy, vol. 79, pp. 467–481, 2015.: DOI: 10.1016/j.energy.2014.11.036.
  • S. Saravanan and A. R. Vidhya Kumar, “Natural convection in square cavity with heat generating baffles,” Appl. Math. Comput., vol. 244, pp. 1–9, 2014. DOI: 10.1016/j.amc.2014.06.092.
  • E. Fontana, A. da Silva, V. C. Mariani, and F. Marcondes, “The influence of baffles on the natural convection in trapezoidal cavities,” Numer. Heat Transf. A: Appl., vol. 58, no. 2, pp. 125–145, 2010. DOI: 10.1080/10407782.2010.496673.
  • T. Armaghani, A. Kasaeipoor, N. Alavi, and M. M. Rashidi, “Numerical investigation of water-alumina nanofluid natural convection heat transfer and entropy generation in a baffled L-shaped cavity,” J. Mol. Liq., vol. 223, pp. 243–251, 2016. DOI: 10.1016/j.molliq.2016.07.103.
  • S. Hansda and S. K. Pandit, “On the analysis of thermosolutal mixed convection with thermophoresis effects in a wavy porous cabinet,” Numer. Heat Transf. A: Appl., pp. 1–24, 2023. DOI: 10.80/10407782.2023.2227398.
  • S. Hansda and S. K. Pandit, “On the analysis of thermosolutal mixed convection in differentially heated and soluted geometries beyond rectangular,” Int. J. Numer. Methods Heat Fluid Flow, vol. 33, no. 8, pp. 2877–2901, 2023. DOI: 10.1108/HFF-12-2022-0718.
  • I.-L. Ngo and C. Byon, “Effects of heater location and heater size on the natural convection heat transfer in a square cavity using finite element method,” J. Mech. Sci. Technol., vol. 29, pp. 2995–3003, 2015. DOI: 10.1007/s12206-015-0630-z.
  • T. Basak, S. Roy, and A. R. Balakrishnan, “Effects of thermal boundary conditions on natural convection flows within a square cavity,” Int. J. Heat Mass Transf., vol. 49, nos. 23–24, pp. 4525–4535, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.015.
  • K. Al Kalbani, S. Alam, and M. M. Rahman, “Finite element analysis of unsteady natural convective heat transfer and fluid flow of nanofluids inside a tilted square enclosure in the presence of oriented magnetic field,” Research Gate, vol. 3, no. 3, pp. 186–224, 2016. DOI: 10.7726/ajhmt.2016.1012.
  • S. Hansda, S. K. Pandit, and T. W. Sheu, “Performance of thermosolutal discharge for double diffusive mixed convection of hybrid nanofluid in a lid driven concave–convex chamber,” J. Therm. Anal. Calorim., vol. 148, pp. 1109–1131, 2023. DOI: 10.1007/s10973-022-11699-5.
  • S. Hansda, S. K. Pandit, and T. W. Sheu, “Thermosolutal discharge of double diffusion mixed convection flow with Brownian motion of nanoparticles in a wavy chamber,” J. Therm. Anal. Calorim., vol. 147, pp. 7007–7029, 2022. DOI: 10.1007/s10973-021-10971-4.
  • T. Basak, S. Roy, and C. Thirumalesha, “Finite element analysis of natural convection in a triangular enclosure: effects of various thermal boundary conditions,” Chem. Eng. Sci. vol. 62, pp. 2623–2640, 2007. DOI: 10.1016/j.ces.2007.01.053.
  • W. Wu and C. Y. Ching, “Laminar natural convection in an air-filled square cavity with partitions on the top wall,” Int. J. Heat Mass Transf., vol. 43574, pp. 399–414. DOI: 10.1016/j.ijheatmasstransfer.2010.01.014.
  • S. Hansda, A. Chattopadhyay, and S. K. Pandit, “Analysis of thermsolutal performance and entropy generation for ternary hybrid nanofluid in a partially heated wavy porous cabinet,” Int. J. Numer. Methods Heat Fluid Flow, vol. 34, no. 2, pp. 709–740, 2024. DOI: 10.1108/HFF-06-2023-0349.
  • S. Hansda, A. Chattopadhyay, and S. K. Pandit, “Optimizing thermosolutal and hydrothermal performance of radiative hybrid ferrofluid and entropy generation in a wavy porous enclosure,” J. Magn. Magn. Mater., vol. 592, pp. 171774, 2024. DOI: 10.1016/j.jmmm.2024.171774.
  • M. Y. Ha, M. J. Jung, and Y. S. Kim, “Numerical study on transient heat transfer and fluid flow of natural convection in an enclosure with a heat-generating conducting body,” Numer. Heat Transf. A: Appl., vol. 35, pp. 415–433, 1999. DOI: 10.1080/104077899275209.
  • A. Chattopadhyay, K. D. Goswami, S. K. Pandit, and S. Hansda, “Hydrothermal characteristics of ferrofluid in a wavy chamber with magnetic field-dependent viscosity: Effects of moving walls,” J. Magn. Magn. Mater., vol. 591, pp. 171655, 2024. DOI: 10.1016/j.jmmm.2023.171655.
  • F. Khan, Y. Xiao-Dong, N. Aamir, T. Saeed, and M. Ibrahim, “Optimization and numerical investigation of the effect of wall conduction and magnetic field on the nanofluid flow inside a three-dimensional enclosure using the lattice Boltzmann method,” Chem. Eng. Commun., vol. 210, pp. 955–969, 2023. DOI: 10.1080/00986445.2021.1990888.
  • F. Khan, Y. Xiao-Dong, N. Aamir, T. Saeed and M. Ibrahim, “The effect of radiation on entropy and heat transfer of MHD nanofluids inside a quarter circular enclosure with a changing L-shaped source: lattice Boltzmann methods,” Chem. Eng. Commun., vol. 210, no. 5, pp. 740–755, 2023. DOI: 10.1080/00986445.2021.1990887.
  • F. Khan and X. J. I. Yang, “Mathematical analysis of two phase saturated nanofluid influenced by magnetic field gradient,” Inventions, vol. 6, no. 2, pp. 26, 2021. DOI: 10.3390/inventions6020026.
  • R. Ali, Z. Zhang, and H. J. O. Ahmad, “Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: An analytical study,” Opt. Quant. Electron., vol. 56, no. 5, pp. 1–31, 2024. DOI: 10.1007/s11082-024-06370-2.
  • S. Saravanan and C. J. C. Sivaraj, “Combined natural convection and thermal radiation in a square cavity with a nonuniformly heated plate,” Comput. Fluids, vol. 117, pp. 125–138, 2015. DOI: 10.1016/j.compfluid.2015.05.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.