4
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimizing thermal performance of nanofluid impinging upon a nonlinearly stretching sheet using Taguchi technique

ORCID Icon & ORCID Icon
Received 30 Jan 2024, Accepted 04 Jun 2024, Published online: 21 Jun 2024

References

  • H. S. Takhar, A. J. Chamkha and G. Nath, “Unsteady three-dimensional MHD-boundary-layer flow due to the impulsive motion of a stretching surface,” Acta Mech., vol. 146, no. 1–2, pp. 59–71, Jan. 2001. DOI: 10.1007/BF01178795.
  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys., vol. 21, no. 4, pp. 645–647, Jul. 1970. DOI: 10.1007/BF01587695.
  • E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface,” J. Phys. D Appl. Phys., vol. 32, no. 5, pp. 577–585, 1999. DOI: 10.1088/0022-3727/32/5/012.
  • K. Vajravelu, “Viscous flow over a nonlinearly stretching sheet,” Appl. Math. Comput., vol. 124, no. 3, pp. 281–288, 15 Dec. 2001. DOI: 10.1016/S0096-3003(00)00062-X.
  • H. I. Andersson, J. B. Aarseth and B. S. Dandapat, “Heat transfer in a liquid film on an unsteady stretching surface,” Int. J. Heat Mass Transf., vol. 43, no. 1, pp. 69–74, Jan. 2000. DOI: 10.1016/S0017-9310(99)00123-4.
  • B. S. Dandapat, B. Santra and H. I. Andersson, “Thermocapillarity in a liquid film on an unsteady stretching surface,” Int. J. Heat Mass Transf., vol. 46, no. 16, pp. 3009–3015, 2 Jan. 2003. DOI: 10.1016/S0017-9310(03)00078-4.
  • B. Dandapat, B. Santra and K. Vajravelu, “The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet,” Int. J. Heat Mass Transf., vol. 50, no. 5–6, pp. 991–996, 23 Oct. 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.08.007.
  • R. Tsai, K. Huang and J. Huang, “Flow and heat transfer over an unsteady stretching surface with non-uniform heat source,” Int. Commun. Heat Mass Transf., vol. 35, no. 10, pp. 1340–1343, 3 Aug. 2008. DOI: 10.1016/j.icheatmasstransfer.2008.07.001.
  • J. Hasnain and N. Abid, “Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet,” Numer. Heat Transf. A Appl., vol. 83, no. 12, pp. 1365–1376, 04 Aug. 2022. DOI: 10.1080/10407782.2022.2104582.
  • K. Hiemenz, “Die grenzschicht an einem in den gleichformigen flussigkeitsstrom eingetauchten geraden kreiszylinder,” Dinglers Polytech. J., vol. 326, pp. 321–324, 1911.
  • F. Homann, “Der einfluss grosser zähigkeit bei der strömung um den zylinder und um die Kugel”, ZAMM-J. Appl. Math. Mech./Zeitschrif. Angew. Math. Mech, vol. 16, no. 3, pp. 153–164, 1936. DOI: 10.1002/zamm.19360160304.
  • H. Masuda, A. Ebata and K. Teramae, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. dispersion of Al2O3,” SiO2 and TiO2 Ultra-Fine Particles, vol. 7, no. 4, pp. 227–233, 1993. DOI: 10.2963/jjtp.7.227.
  • W. Minkowycz, E. M. Sparrow and J. P. Abraham, Nanoparticle Heat Transfer and Fluid Flow, vol. 4. Boca Raton, FL: CRC Press, 2012.
  • R. Sharma, M. K. Mishra and C. S. K. Raju, Statistical analysis of entropy generation on the maxwell-graphene based nanofluid passing through a squeezing channel. 11 Dec. 2023. DOI: 10.1080/10407782.2023.2290087.
  • R. Sharma, M. K. Mishra, K. Nirisha, V. Nagaradhika and A. J. Chamkha, “Thermal radiation effect on the maxwell graphene based nanofluid passing through a squeezing channel,” Numer. Heat Transf. B Fundamental, pp. 1–16, 21 Nov. 2023. DOI: 10.1080/10407790.2023.2279088.
  • B. Nayak, S. S. Acharya and S. Mishra, “Significance of radiation on the brinkman-type nanofluid with variable surface velocity embedding with porous matrix,” Numer. Heat Transf. B Fundamental., pp. 1–19, 07 Mar. 2024. DOI: 10.1080/10407790.2024.2323057.
  • K. Dehnad, Quality Control, Robust Design, and the Taguchi Method. Berlin, Germany: Springer Science & Business Media, 2012.
  • V. Bhalla, V. Khullar and H. Tyagi, “Investigation of factors influencing the performance of nanofluid-based direct absorption solar collector using Taguchi method,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1493–1505, 20 Sept. 2018. DOI: 10.1007/s10973-018-7721-x.
  • A. Abadeh, M. Passandideh-Fard, M. J. Maghrebi and M. Mohammadi, “Stability and magnetization of fe 3 o 4/water nanofluid preparation characteristics using Taguchi method,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1323–1334, 08 Sept. 2018. DOI: 10.1007/s10973-018-7662-4.
  • S. M. Javadpour, E. A. J. Abadi, O. A. Akbari and M. Goharimanesh, “Optimization of geometry and nano-fluid properties on microchannel performance using Taguchi method and genetic algorithm,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104952, Dec. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104952.
  • R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, no. 9–10, pp. 2002–2018, May 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.
  • D. A. Nield et al., Convection in Porous Media, vol. 3. Berlin, Germany: Springer, 2006.
  • M. N. Rostami, S. Dinarvand and I. Pop, “Dual solutions for mixed convective stagnation-point flow of an aqueous silica–Alumina hybrid nanofluid,” Chin. J. Phys., vol. 56, no. 5, pp. 2465–2478, Oct. 2018. DOI: 10.1016/j.cjph.2018.06.013.
  • A. Zaib, R. U. Haq, A. J. Chamkha and M. M. Rashidi, “Impact of partial slip on mixed convective flow towards a riga plate comprising micropolar tio2-kerosene/water nanoparticles,” HFF, vol. 29, no. 5, pp. 1647–1662, 6 Nov. 2018. DOI: 10.1108/HFF-06-2018-0258.
  • N. S. Khashi’ie, N. M. Arifin and I. Pop, “Non-Darcy mixed convection of hybrid nanofluid with thermal dispersion along a vertical plate embedded in a porous medium,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104866, Nov. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104866.
  • A. Belhadj, “Numerical investigation of forced convection of nanofluid in microchannels heat sinks,” J. Thermal Eng., vol. 4, no. 5, pp. 2263–2273, 2018. DOI: 10.18186/thermal.438480.
  • T. R. Mahapatra and A. Gupta, “Heat transfer in stagnation-point flow towards a stretching sheet,” Heat Mass Transf., vol. 38, no. 6, pp. 517–521, Jun. 2002. DOI: 10.1007/s002310100215.
  • T. R. Bement, Taguchi techniques for quality engineering. vol. 31, no. 2, pp. 253-255, 23 Mar. 2012. DOI: 10.1080/00401706.1989.10488519.
  • S. Moolya and S. Anbalgan, “Optimization of the effect of Prandtl number, inclination angle, magnetic field, and Richardson number on double-diffusive mixed convection flow in a rectangular domain,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105358, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.