8
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stagnation point slip flow of Al2O3/γ-Al2O3 nanofluids subject to Lorentz force and nonlinear thermal radiation over a stretching sheet

, , ORCID Icon, ORCID Icon &
Received 29 Oct 2023, Accepted 07 Jun 2024, Published online: 21 Jun 2024

References

  • S. U. Choi, “Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows,” ASME J. Heat Trans., vol. 231, pp. 99–105, 1995.
  • A. K. Verma, A. K. Gautam, K. Bhattacharyya, and R. P. Sharma, “Existence of boundary layer nanofluid flow through a divergent channel in porous medium with mass suction/injection,” Sādhanā, vol. 46, no. 2, pp. 98, 2021. DOI: 10.1007/s12046-021-01588-2.
  • R. P. Sharma, S. Shukla, and S. R. Mishra, “Influence of an induced magnetic field and flow behavior of (AA7072–AA7075/water) hybrid nanoliquid in a vertical channel with suction velocity,” J. Therm. Anal. Calorim., vol. 148, no. 20, pp. 11155–11166, 2023. DOI: 10.1007/s10973-023-12395-8.
  • S. Shukla, R. P. Sharma, R. J. P. Gowda, and B. C. Prasannakumara, “Elastic deformation effect on carboxymethyl cellulose water-based (TiO2–Ti6Al4V) hybrid nanoliquid over a stretching sheet with an induced magnetic field,” Numer. Heat Trans. Part A: Appl., vol. 84, no. 11, pp. 1401–1415, 2023. DOI: 10.1080/10407782.2023.2175750.
  • R. P. Sharma, S. Baag, S. R. Mishra, and P. Sahoo, “On the radiative heat transport phenomena in MHD Williamson nanofluid flow past an expanding surface with an interaction of inclined magnetic field,” J. Therm. Anal. Calorim., vol. 148, no. 14, pp. 7319–7332, 2023. DOI: 10.1007/s10973-023-12206-0.
  • M. I. S. Basha and D. M. G. Anthony, “Numerical investigation of non-linear radiative flow of hybrid nanofluid past a stretching cylinder with inclined magnetic field,” Numer. Heat Trans. Part B: Fundam., vol. 85, no. 7, pp. 842–866, 2023. DOI: 10.1080/10407790.2023.2257381.
  • J. Kaur, U. Gupta, and R. P. Sharma, “Nonlinear stability analysis for the rheology of Oldroyd-B nanofluids embedded by Darcy–Brinkman porous media using a two-phase model,” Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng., vol. 237, no. 6, pp. 2300–2313, 2023. DOI: 10.1177/09544089221141600.
  • O. Prakash, N. Sandeep, R. P. Sharma, and P. S. Rao, “Influence of radiative heat on MHD Cu-Si/water dusty-nanoliquid flow above an enlarging sheet,” Waves Random Complex Media, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2141470.
  • S. Tinker, S. Mishra, P. Pattnaik, and R. P. Sharma, “Simulation of time-dependent radiative heat motion over a stretching/shrinking sheet of hybrid nanofluid: stability analysis for dual solutions,” Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst., vol. 236, no. 1–2, pp. 19–30, 2022. DOI: 10.1177/23977914211069021.
  • S. S. Payad, N. Sandeep, and R. P. Sharma, “Impact of cross-diffusion on methanol-based Fe3O4 nanofluid,” Biointerface Res. Appl. Chem., vol. 11, no. 4, pp. 11499–11508, 2021. DOI: 10.33263/BRIAC114.1149911508.
  • G. Kumaran, R. Sivaraj, V. R. Prasad, O. A. Beg, and R. P. Sharma, “Finite difference computation of free magneto-convective Powell-Eyring nanofluid flow over a permeable cylinder with variable thermal conductivity,” Phys. Scr., vol. 96, no. 2, pp. 025222, 2021. DOI: 10.1088/1402-4896/abd121.
  • M. B. Jeelani and A. Abbas, “Al2O3-Cu\ethylene glycol-based magnetohydrodynamic on-Newtonian Maxwell hybrid nanofluid flow with suction effects in a porous space: energy saving by solar radiation,” Symmetry, vol. 15, no. 9, pp. 1794, 2023. DOI: 10.3390/sym15091794.
  • M. B. Jeelani and A. Abbas, “Thermal efficiency of spherical nanoparticles Al2O3-Cu dispersion in ethylene glycol via the MHD non-Newtonian Maxwell fluid model past the stretching inclined sheet with suction effects in a porous space,” Processes, vol. 11, no. 10, pp. 2842, 2023. DOI: 10.3390/pr11102842.
  • R. P. Sharma, K. Badak, S. R. Mishra, and S. Ahmed, “Behavior of hybrid nanostructure and dust particles in fluid motion with thermal radiation and memory effects,” Eur. Phys. J. Plus, vol. 138, no. 2, pp. 159, 2023. DOI: 10.1140/epjp/s13360-023-03746-3.
  • N. V. Ganesh, A. K. Abdul Hakeem, and B. Ganga, “A comparative theoretical study on Al2O3 and γ-Al2O3 nanoparticles with different base fluids over a stretching sheet,” Adv. Powder Technol., vol. 27, no. 2, pp. 436–441, 2016. DOI: 10.1016/j.apt.2016.01.015.
  • T. Salahuddin, S. Sakinder, S. O. Alharbi, and Z. Abdelmalek, “A brief comparative study of gamma alumina–water and gamma alumina–EG nanofluids flow near a solid sphere,” Math. Comput. Simul., vol. 181, pp. 487–500, 2021. DOI: 10.1016/j.matcom.2020.10.011.
  • O. U. Mehmood, M. M. Masken, and A. Zeshan, “Electromagnetohydrodynamic transport of Al2O3 nanoparticles in ethylene glycol over a convectively heated stretching cylinder,” Adv. Mech. Eng., vol. 9, no. 11, pp. 168781401773528, 2017. DOI: 10.1177/1687814017735282.
  • H. S. Moghaieb, H. M. Abdel-Hamid, M. H. Sheedid, and A. B. Hellali, “Engine cooling using Al2O3/water nanofluids,” Appl. Therm. Eng., vol. 115, pp. 152–159, 2017. DOI: 10.1016/j.applthermaleng.2016.12.099.
  • N. V. Ganesh, A. J. Chammkha, Q. M. Al-Mdalal, and P. K. Kameswaran, “Magneto-Marangoni nano-boundary layer flow of water and ethylene glycol based-Al2O3 nanofluids with non-linear thermal radiation effects,” Case Stud. Therm. Eng., vol. 12, pp. 340–348, 2018. DOI: 10.1016/j.csite.2018.04.019.
  • N. V. Ganesh, Q. M. Al-Mdallal, S. Al-Fahel, and S. Dadoa, “Riga-plate flow of gamma-Al2O3-water/ethylene glycol with effective prandtl number impacts,” Heliyon, vol. 5, no. 5, pp. e01651, 2019. DOI: 10.1016/j.heliyon.2019.e01651.
  • K. Thirumalaisamy et al., “Comparative heat transfer analysis of γ-Al2O3−C2H6O2 and γ-Al2O3−H2O electroconductive nanofluids in a saturated porous square cavity with Joule dissipation and heat source/sink effects,” Phys. Fluids, vol. 34, no. 7, pp. 072001, 2022. DOI: 10.1063/5.0095334.
  • P. Mathur, S. Mishra, and P. K. Pattnaik, “Marangoni convection of γ-Al2O3-water/ethylene glycol nanofluids with the inclusion of nonlinear thermal radiation,” Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst., vol. 237, no. 3–4, pp. 131–143, 2023. DOI: 10.1177/23977914221093839.
  • A. H. Ganie, B. Ullah, J. El Ghoul, K. Zahoor, and U. Khan, “Flow and heat transfer of Al2O3 and γ-Al2O3 through a channel with non-parallel walls: a numerical study,” Nanoscale Adv., vol. 5, no. 21, pp. 5819–5828, 2023. DOI: 10.1039/D3NA00654A.
  • K. Hiemenz, “Die Grenzschicht an einem inden gleichformigen flussigkeitsstrom eingetauchten geraden kreiszylinder,” Dinglers Polytech. J., vol. 326, pp. 321–324, 1911.
  • M. A. El-Aziz and A. A. Afify, “Influences of slip velocity and induced magnetic field on MHD-stagnation point flow and heat transfer of Casson fluid over a stretching sheet,” Math. Prob. Eng., vol. 2018, pp. 1–11, 2018. DOI: 10.1155/2018/9402836.
  • N. S. Anuar, N. Bachok, N. M. Arifin, and H. Rosali, “Stagnation point flow and heat transfer over an exponentially stretching/shrinking sheet in CNT with homogeneous-heterogenous reaction: stability analysis,” Symmetry, vol. 11, no. 4, pp. 522, 2019. DOI: 10.3390/sym11040522.
  • N. S. Anuar, N. Bachok, H. Rosali, and N. M. Arifin, “Stagnation point flow past a quadractically stretching/shrinking sheet in nanofluid: stability analysis,” AIP Conf. Proc., Vol. 2214, pp. 020017, 2020. DOI: 10.1063/5.0003335.
  • O. Prakash, P. S. Rao, R. P. Sharma, and S. R. Mishra, “Hybrid nanofluid MHD motion towards an exponentially stretching/shrinking sheet with the effect of thermal radiation, heat source and viscous dissipation,” Pramana – J. Phys., vol. 97, no. 2, pp. 64, 2023. DOI: 10.1007/s12043-023-02533-0.
  • N. A. Zainal et al., “Dual solutions for general three-dimensional MHD boundary layer stagnation-point flow of hybrid nanofluid and heat transfer,” HFF, vol. 33, no. 12, pp. 4015–4036, 2023. DOI: 10.1108/HFF-02-2023-0078.
  • Y. Bai, Q. Tang, and Y. Zhang, “Unsteady inclined stagnation point flow and thermal transmission of Maxwell fluid on a stretched/contracted plate with modified pressure field,” HFF, vol. 32, no. 12, pp. 3824–3847, 2022. DOI: 10.1108/HFF-12-2021-0780.
  • Z. Mahmood et al., “Analysis of mixed convective stagnation point flow of hybrid nanofluid over sheet with variable thermal conductivity and slip conditions: a model-based study,” Int. J. Heat Fluid Flow, vol. 106, p. 109296, 2024. DOI: 10.1016/j.ijheatfluidflow.2024.109296.
  • A. K. Barik, S. K. Mishra, S. R. Mishra, and P. T. Pattnaik, “Multiple slip effects on MHD nanofluid flow over an inclined, radiative, and chemically reacting stretching sheet by means of FDM,” Heat Trans. Asian Res., vol. 49, no. 1, pp. 477–501, 2019. DOI: 10.1002/htj.21622.
  • W. Ibrahim and M. Negera, “MHD slip flow of upper-convective Maxwell nanofluid over a stretching sheet with chemical reaction,” J. Egypt. Math. Soc., vol. 28, pp. 7, 2020. DOI: 10.1186/s42787-019-0057-2.
  • J. A. Gbadeyan, E. O. Titiloye, and A. T. Adeosun, “Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip,” Heliyon, vol. 6, no. 1, pp. e03076, 2020. DOI: 10.1016/j.heliyon.2019.e03076.
  • R. J. V. Reddy, V. Sugunamma, and N. Sandeep, “Thermophoresis and Brownian motion effects on unstaedy MHD nanofluid flow over a slendering stretching surface with slip effects,” Alex. Eng. J., vol. 57, pp. 2465–2473, 2018. DOI: 10.1016/j.aej.2017.02.014.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail, and A. Bahaar, “Unsteady EMHD dual stratified flow of nanofluid with slip impacts,” Alex. Eng. J., vol. 59, pp. 177–189, 2020. DOI: 10.1016/j.aej.2019.12.020.
  • F. N. Jamrus, I. Waini, U. Khan, and A. Ishak, “Effects of magnetohydrodynamics and velocity slip on mixed convective flow of thermally stratified ternary hybrid nanofluid over a stretching/shrinking sheet,” Case Stud. Therm. Eng., vol. 55, pp. 104161, 2024. DOI: 10.1016/j.csite.2024.104161.
  • M. V. Krishna and A. V. Kumar, “Chemical reaction, slip effects and non-linear thermal radiation on unsteady MHD Jeffreys nanofluid flow over a stretching sheet,” Case Stud. Therm. Eng., vol. 55, pp. 104129, 2024. DOI: 10.1016/j.csite.2024.104129.
  • P. R. Sekhar et al., “Investigating radiative heat transfer, varied wall thickness, and slip effects on Casson nanofluid flow over a stretched sheet with heat source,” Int. J. Modell. Simul., pp. 1–17, 2024. DOI: 10.1080/02286203.2024.2345256.
  • N. Kanimozhi, R. Vijayaragavan, and B. R. Kumar, “Impacts of multiple slip on magnetohydrodynamic Williamson and Maxwell nanofluid over a stretching sheet saturated in a porous medium,” Numer. Heat Trans. B-Fundam., vol. 85, no. 3, pp. 344–360, 2024. DOI: 10.1080/10407790.2023.2235079.
  • S. Anagandula and K. S. Reddy, “Velocity and thermal slips impact on the Williamson fluid flow above a stretching sheet in the existence of radiation and inclined magnetic field.”CFDL, vol. 16, no. 7, pp. 118–135, 2024. DOI: 10.37934/cfdl.16.7.118135.
  • Z. Khan, W. Khan, Y. A. Arko, R. H. Egami, and H. A. Garalleh, “Numerical stability of magnetized Williamson nanofluid over a stretching/shrinking sheet with velocity and thermal slips effect,” Numer. Heat Trans. B-Fundam., pp. 1–21, 2024. DOI: 10.1080/10407790.2024.2321483.
  • J. Hasnain, “Irreversibility analysis for unsteady slip flow of heat absorptive liquid with multiple mass diffusion of nanomaterials over a permeable vertical moving plate: a comparative study,” Proc. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng., 2024. DOI: 10.1177/09544089241239824.
  • R. P. Sharma et al., “Nonlinear thermal radiation and heat source effects on unsteady electrical MHD motion of nanofluid past a stretching surface with binary chemical reaction,” Eur. Phys. J. Plus, vol. 137, no. 3, pp. 297, 2022. DOI: 10.1140/epjp/s13360-022-02359-6.
  • J. Hasnain, H. G. Satti, M. Sheikh, and Z. Abbas, “Study of double slip boundary condition on the oscillatory flow of dusty ferrofluid confined in a permeable channel,” FU Mech. Eng., vol. 21, no. 4, pp. 671–684, 2023. DOI: 10.22190/FUME211228019H.
  • M. A. A. Hamad, “Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field,” Int. Commun. Heat Mass Trans., vol. 38, no. 4, pp. 487–492, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.12.042.
  • N. V. Ganesh, Q. M. Al-Mdallal, and P. K. Kameswaran, “Numerical study of MHD effective Prandtl number boundary layer flow of γ-Al2O3 nanofluids past a melting surface,” Case Stud. Therm. Eng., vol. 13, pp. 100413, 2019. DOI: 10.1016/j.csite.2019.100413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.