44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy generation due to mixed convective transport from a rotating porous cylinder inside a shear-driven cavity

, , ORCID Icon &
Received 09 Apr 2024, Accepted 10 Jun 2024, Published online: 21 Jun 2024

References

  • M. M. Billah, M. M. Rahman, U. M. Sharif, N. A. Rahim, R. Saidur and M. Hasanuzzaman, “Numerical analysis of fluid flow due to mixed convection in a lid-driven cavity having a heated circular hollow cylinder,” Int. Commun. Heat Mass Transf., vol. 38, no. 8, pp. 1093–1103, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.05.018.
  • K. Khanafer and S. M. Aithal, “Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder,” Int. J. Heat Mass Transf., vol. 66, pp. 200–209, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.023.
  • G. F. Zheng, M. Y. Ha, H. S. Yoon and Y. G. Park, “A numerical study on mixed convection in a lid-driven cavity with a circular cylinder,” J. Mech. Sci. Technol., vol. 27, no. 1, pp. 273–286, 2013. DOI: 10.1007/s12206-012-1201-1.
  • A. K. Kareem and S. Gao, “Mixed convection heat transfer enhancement in a cubic lid-driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall,” Phys. Fluids, vol. 30, no. 2, pp. 025103, Feb. 2018. DOI: 10.1063/1.5017474.
  • T. Basak, S. Roy, P. K. Sharma and I. Pop, “Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall,” Int. J. Therm. Sci, vol. 48, no. 5, pp. 891–912, 2009. DOI: 10.1016/j.ijthermalsci.2008.08.003.
  • I. Dagtekin and H. Oztop, “Mixed convection in an enclosure with a vertical heated block located,” In Proceedings of ESDA2002: 6th Biennial Conference on Engineering Systems Design and Analysis, pp. 1–8, Jan. 2002.
  • A. J. Chamkha, “Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption,” Numer. Heat. Transf. A Appl., vol. 41, no. 5, pp. 529–546, Apr. 2002. DOI: 10.1080/104077802753570356.
  • B. Karbasifar, M. Akbari and D. Toghraie, “Mixed convection of Water-Aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder,” Int. J. Heat Mass Transf., vol. 116, pp. 1237–1249, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.110.
  • F. Talebi, A. H. Mahmoudi and M. Shahi, “Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid,” Int. Commun. Heat Mass Transf., vol. 37, no. 1, pp. 79–90, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.08.013.
  • T. S. Cheng, “Characteristics of mixed convection heat transfer in a lid-driven square cavity with various Richardson and Prandtl numbers,” Int. J. Therm. Sci., vol. 50, no. 2, pp. 197–205, 2011. DOI: 10.1016/j.ijthermalsci.2010.09.012.
  • C. C. Cho, C. L. Chen and C.-K. Chen, “Mixed convection heat transfer performance of water-based nanofluids in lid-driven cavity with wavy surfaces,” Int. J. Therm. Sci, vol. 68, pp. 181–190, 2013. DOI: 10.1016/j.ijthermalsci.2013.01.013.
  • S. M. Dash, T. S. Lee and H. Huang, “Natural Convection from an Eccentric Square Cylinder Using a Novel Flexible Forcing IB-LBM Method,” Numer. Heat Transf., Part A: Appl., vol. 65, no. 6, pp. 531–555, 2014. DOI: 10.1080/10407782.2013.836019.
  • S. M. Dash and T. S. Lee, “Natural Convection in a Square Enclosure with a Square Heat Source at Different Horizontal and Diagonal Eccentricities,” Numer. Heat Trans., Part A: Appl., vol. 68, no. 6, pp. 686–710, 2015. DOI: 10.1080/10407782.2014.994414.
  • S. M. Dash and S. Sahoo, “A Study on Natural Convection in a Cold Square Enclosure with Two Vertical Eccentric Square Heat Sources Using the IB–LBM Scheme,” ASME. J. Therm. Sci. Eng. Appl., vol. 11, no. 5, pp. 051013, 2019. DOI: 10.1115/1.4042858.
  • A. Bhunia and S. M. Dash, “Mixed convection in a lid driven square cavity using lattice Boltzmann method: effects of thermal gradient direction and moving lid length,” Numer. Heat Transf, Part B: Fundam., vol. 83, no. 3, pp. 81–101, 2023. DOI: 10.1080/10407790.2022.2143972.
  • A. Bagchi and F. A. Kulacki, “Introduction,” in Natural Convection in Superposed Fluid-Porous Layers, A. Bagchi and F. A. Kulacki, Eds., New York, NY: Springer New York, 2014, pp. 1–3. DOI: 10.1007/978-1-4614-6576-8_1.
  • A. Narasimhan, “Basic Concepts,” in Essentials of Heat and Fluid Flow in Porous Media, A. Narasimhan, Ed., Cham: Springer International Publishing, 2023, pp. 1–17. DOI: 10.1007/978-3-030-99865-3_1.
  • D. A. Nield and A. Bejan, Convection Porous media - Donald A, 2006.
  • D. Chatterjee, B. Mondal and P. Halder, “Hydromagnetic mixed convective transport in a vertical lid-driven cavity including a heat conducting rotating circular cylinder,” Numer. Heat Transf. A Appl., vol. 65, no. 1, pp. 48–65, Jan. 2014. DOI: 10.1080/10407782.2013.812399.
  • D. Chatterjee, S. K. Gupta and B. Mondal, “Mixed convective transport in a lid-driven cavity containing a nanofluid and a rotating circular cylinder at the center,” Int. Commun. Heat Mass Transf., vol. 56, pp. 71–78, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.06.002.
  • F. Selimefendigil and H. F. Oztop, “Mixed convection of ferrofluids in a lid driven cavity with two rotating cylinders,” Eng. Sci. Technol., vol. 18, no. 3, pp. 439–451, 2015. DOI: 10.1016/j.jestch.2015.03.003.
  • M. A. Teamah, “Numerical simulation of double diffusive laminar mixed convection in a horizontal annulus with hot, solutal and rotating inner cylinder,” Int. J. Therm. Sci., vol. 46, no. 7, pp. 637–648, 2007. DOI: 10.1016/j.ijthermalsci.2006.09.002.
  • M. A. Teamah and W. M. El-Maghlany, “Numerical simulation of double-diffusive mixed convective flow in rectangular enclosure with insulated moving lid,” Int. J. Therm. Sci, vol. 49, no. 9, pp. 1625–1638, 2010. DOI: 10.1016/j.ijthermalsci.2010.04.023.
  • S. Bansal and D. Chatterjee, “Magneto-convective transport of nanofluid in a vertical lid-driven cavity including a heat-conducting rotating circular cylinder,” Numer. Heat Transf. A Appl., vol. 68, no. 4, pp. 411–431, Aug. 2015. DOI: 10.1080/10407782.2014.986361.
  • K. Khanafer, S. M. Aithal and K. Vafai, “Mixed convection heat transfer in a differentially heated cavity with two rotating cylinders,” Int. J. Therm. Sci., vol. 135, pp. 117–132, 2019. DOI: 10.1016/j.ijthermalsci.2018.07.020.
  • F. Selimefendigil and H. F. Oztop, “Mixed convection in a PCM filled cavity under the influence of a rotating cylinder,” Solar Energy, vol. 200, pp. 61–75, 2020. DOI: 10.1016/j.solener.2019.05.062.
  • M. Chandesris, A. D’Hueppe, B. Mathieu, D. Jamet and B. Goyeau, “Direct numerical simulation of turbulent heat transfer in a fluid-porous domain,” Phys. Fluids, vol. 25, no. 12, pp. 125110, Dec. 2013. DOI: 10.1063/1.4851416.
  • A. J. Chamkha, F. Selimefendigil and M. A. Ismael, “Mixed convection in a partially layered porous cavity with an inner rotating cylinder,” Numer. Heat Transf. A Appl., vol. 69, no. 6, pp. 659–675, Mar. 2016. DOI: 10.1080/10407782.2015.1081027.
  • I. A. Badruddin, N. J. Salman Ahmed, A. E. Anqi and S. Kamangar, “Conjugate heat and mass transfer in a vertical porous cylinder,” J. Thermophys. Heat Transf., vol. 33, no. 2, pp. 548–558, Dec. 2018. DOI: 10.2514/1.T5488.
  • A. I. Alsabery, T. Tayebi, A. J. Chamkha and I. Hashim, “Effect of rotating solid cylinder on entropy generation and convective heat transfer in a wavy porous cavity heated from below,” Int. Commun. Heat Mass Transf., vol. 95, pp. 197–209, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.05.003.
  • K. Al-Farhany and A. D. Abdulsahib, “Study of mixed convection in two layers of saturated porous medium and nanofluid with rotating circular cylinder,” Progress Nucl. Energy, vol. 135, pp. 103723, 2021. DOI: 10.1016/j.pnucene.2021.103723.
  • M. Tahmasbi, M. Siavashi, H. R. Abbasi and M. Akhlaghi, “Mixed convection enhancement by using optimized porous media and nanofluid in a cavity with two rotating cylinders,” J. Therm. Anal. Calorim., vol. 141, no. 5, pp. 1829–1846, 2020. DOI: 10.1007/s10973-020-09604-z.
  • L. Kolsi, F. Selimefendigil, H. F. Oztop, W. Hassen and W. Aich, “Impacts of double rotating cylinders on the forced convection of hybrid nanofluid in a bifurcating channel with partly porous layers,” Case Stud. Therm. Eng., vol. 26, pp. 101020, 2021. DOI: 10.1016/j.csite.2021.101020.
  • N. M. Basher, O. R. Alomar and I. A. Mohamed, “Impact of using single heated obstacle on natural convection inside porous cavity under non-Darcy flow and thermal non-equilibrium model: a comparison between horizontal and vertical heated obstacle arrangements,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105925, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105925.
  • P. Barnoon, D. Toghraie, R. B. Dehkordi and H. Abed, “MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model,” J. Magn. Magn. Mater., vol. 483, pp. 224–248, 2019. DOI: 10.1016/j.jmmm.2019.03.108.
  • P. Vadasz, “Fluid flow through heterogeneous porous media in a rotating square channel,” Transp. Porous Med., vol. 12, no. 1, pp. 43–54, 1993. DOI: 10.1007/BF00616361.
  • M. Kretschmer, E. N. Hayta, M. J. Ertelt, M. A. Würbser, J. Boekhoven and O. Lieleg, “A rotating bioreactor for the production of biofilms at the solid–air interface,” Biotechnol. Bioeng., vol. 119, no. 3, pp. 895–906, Mar. 2022. DOI: 10.1002/bit.28023.
  • F. E. Nia, D. van Paassen and M. H. Saidi, “Modeling and simulation of desiccant wheel for air conditioning,” Energy Build., vol. 38, no. 10, pp. 1230–1239, 2006. DOI: 10.1016/j.enbuild.2006.03.020.
  • M. A. Ismael, T. Armaghani and A. J. Chamkha, “Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid,” J. Taiwan Inst. Chem. Eng., vol. 59, pp. 138–151, 2016. DOI: 10.1016/j.jtice.2015.09.012.
  • S. Bhardwaj, A. Dalal and S. Pati, “Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure,” Energy, vol. 79, pp. 467–481, 2015. DOI: 10.1016/j.energy.2014.11.036.
  • S. Taghizadeh and A. Asaditaheri, “Heat transfer and entropy generation of laminar mixed convection in an inclined lid driven enclosure with a circular porous cylinder,” Int. J. Therm. Sci., vol. 134, pp. 242–257, 2018. DOI: 10.1016/j.ijthermalsci.2018.08.018.
  • D. Kashyap, A. K. Dass, H. F. Oztop and N. Abu-Hamdeh, “Multiple-relaxation-time lattice Boltzmann analysis of entropy generation in a hot-block-inserted square cavity for different Prandtl numbers,” Int. J. Therm. Sci., vol. 165, pp. 106948, 2021. DOI: 10.1016/j.ijthermalsci.2021.106948.
  • C. Kumar, D. Chatterjee and B. Mondal, “Effect of porosity and transverse magnetic field on the wake separation and detachment around a porous square cylinder,” Transp. Porous Med., vol. 146, no. 3, pp. 805–825, 2023. DOI: 10.1007/s11242-022-01889-y.
  • A. Bejan, “Second-Law Analysis in Heat Transfer and Thermal Design,” In Adv. Heat Transf., vol. 15, J. P. Hartnett and T. F. Irvine, Eds., Elsevier, 1982, pp. 1–58. DOI: 10.1016/S0065-2717(08)70172-2.
  • G. G. Ilis, M. Mobedi and B. Sunden, “Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls,” Int. Commun. Heat Mass Transf., vol. 35, no. 6, pp. 696–703, 2008. DOI: 10.1016/j.icheatmasstransfer.2008.02.002.
  • G. H. R. Kefayati, “Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity,” Powder Technol., vol. 299, pp. 127–149, 2016. DOI: 10.1016/j.powtec.2016.05.032.
  • X. Yang, Q. Shao, H. Hoteit, J. Carrera, A. Younes and M. Fahs, “Three-dimensional natural convection, entropy generation and mixing in heterogeneous porous medium,” Adv. Water Resour., vol. 155103992, pp., pp. 1–19, 2021. DOI: 10.1016/j.advwatres.2021.103992.
  • Q. Shao, M. Fahs, A. Younes, A. Makradi and T. Mara, “A new benchmark reference solution for double-diffusive convection in a heterogeneous porous medium,” Numer. Heat Transf. Part B: Fundam., vol. 70, no. 5, pp. 373–392, 2016. DOI: 10.1080/10407790.2016.1215718.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.