30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synergistic effects of a swirl generator and MXene/water nanofluids used in a heat exchanger pipe of a negative CO2 emission gas power plant

ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Jan 2024, Accepted 10 Jun 2024, Published online: 20 Jun 2024

References

  • Y. Krishna, M. Faizal, R. Saidur, K. Ng and N. Aslfattahi, “State-of-the-art heat transfer fluids for parabolic trough collector,” Int. J. Heat Mass Transf., vol. 152, pp. 119541, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119541.
  • H. A. Mohammed Hussein, R. Zulkifli, W. M. F. B. W. Mahmood and R. K. Ajeel, “Structure parameters and designs and their impact on performance of different heat exchangers: a review,” Renew. Sustain. Energy Rev., vol. 154, pp. 111842, 2022. DOI: 10.1016/j.rser.2021.111842.
  • B. Lotfi and B. Sundén, “Development of new finned tube heat exchanger: innovative tube-bank design and thermohydraulic performance,” Heat Transf. Eng., vol. 41, no. 14, pp. 1209–1231, 2020. DOI: 10.1080/01457632.2019.1637112.
  • M. Ishaq, I. Ul Haq and K. Saifullah Syed, “Heat transfer enhancement in finned annulus of elliptic-circular heat exchanger,” Numer. Heat Transf. Part A Appl., pp. 1–29, 2023. DOI: 10.1080/10407782.2023.2273991.
  • T. D. Hong, M. Q. Pham and P. T. Truong, “Study on heat exchanger structural optimization of stationary engine thermoelectric generator system,” Numer. Heat Transf. Part A Appl., pp. 1–20, 2023. DOI: 10.1080/10407782.2023.2269598.
  • L. Yue, W. Meng, C. Qi and L. Liang, “Heat transfer enhancement of nanofluids in concentric cylindrical heat exchanger,” Numer. Heat Transf. Part A Appl., pp. 1–26, 2024. DOI: 10.1080/10407782.2024.2338922.
  • M. Froissart and T. Ochrymiuk, “Novel wet combustion chamber concept CFD studies with triple water inlet,” Energy, vol. 278, pp. 127854, 2023. DOI: 10.1016/j.energy.2023.127854.
  • M. Jafari, S. Dabiri, M. Farhadi and K. Sedighi, “Effects of a three-lobe swirl generator on the thermal and flow fields in a heat exchanging tube: an experimental and numerical approach,” Energy Convers. Manage., vol. 148, pp. 1358–1371, 2017. DOI: 10.1016/j.enconman.2017.06.074.
  • M. T. Al-Asadi, F. Alkasmoul and M. Wilson, “Heat transfer enhancement in a micro-channel cooling system using cylindrical vortex generators,” Int. Commun. Heat Mass Transf., vol. 74, pp. 40–47, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.03.002.
  • P. Sivashanmugam, Application of Nanofluids in Heat Transfer. An Overview Heat Transfer Phenomena, vol. 16, InTech, Croatia, 2012.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Argonne National Lab.(ANL), Argonne, IL (United States), 1995.
  • M. Mehrali, M. K. Ghatkesar and R. Pecnik, “Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids,” Appl. Energy, vol. 224, pp. 103–115, 2018. DOI: 10.1016/j.apenergy.2018.04.065.
  • H. Arasteh, R. Mashayekhi, M. Goodarzi, S. H. Motaharpour, M. Dahari and D. Toghraie, “Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid,” J. Therm. Anal. Calorim., vol. 138, no. 2, pp. 1461–1476, 2019. DOI: 10.1007/s10973-019-08168-x.
  • A. Siricharoenpanich, S. Wiriyasart, A. Srichat and P. Naphon, “Thermal cooling system with Ag/Fe3O4 nanofluids mixture as coolant for electronic devices cooling,” Case Stud. Therm. Eng., vol. 20, pp. 100641, 2020. DOI: 10.1016/j.csite.2020.100641.
  • M. Amiri and D. Mikielewicz, “Three-dimensional numerical investigation of hybrid nanofluids in chain microchannel under electrohydrodynamic actuator,” Numer. Heat Transf. Part A Appl., vol. 83, no. 10, pp. 1146–1173, 2023. DOI: 10.1080/10407782.2022.2150342.
  • M. Feng, L. Zhang, H. Zhang, J. Wu and S. Bi, “Numerical simulation on nanofluid enhancement of downward facing surface’s critical heat flux,” Numer. Heat Transf. Part A Appl., pp. 1–24, 2023. DOI: 10.1080/10407782.2023.2297810.
  • A. Mishra and H. Upreti, “Computational analysis of radiative nanofluid flow past an inclined cylinder with slip effects using the Yamada–Ota model,” Numer. Heat Transf. Part A Appl., pp. 1–19, 2023. DOI: 10.1080/10407782.2023.2258556.
  • L. Saidani, T. Tayebi, M. Djezzar and E. H. Malekshah, “Magneto-double-diffusive natural convection and irreversibility analysis of a nanofluid flowing in an annular concentric space,” Numer. Heat Transf. Part A Appl., pp. 1–23, 2023. DOI: 10.1080/10407782.2023.2272787.
  • K. S. Novoselov, et al., “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. DOI: 10.1126/science.1102896.
  • A. G. Olabi, M. A. Abdelkareem, T. Wilberforce and E. T. Sayed, “Application of graphene in energy storage device–A review,” Renew. Sustain. Energy Rev., vol. 135, pp. 110026, 2021. DOI: 10.1016/j.rser.2020.110026.
  • S. Alous, M. Kayfeci and A. Uysal, “Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems,” Appl. Therm. Eng., vol. 162, pp. 114265, 2019. DOI: 10.1016/j.applthermaleng.2019.114265.
  • T. Zheng, et al., “Comparisons between graphene oxide and graphdiyne oxide in physicochemistry biology and cytotoxicity,” ACS Appl. Mater Interfaces, vol. 10, no. 39, pp. 32946–32954, 2018. DOI: 10.1021/acsami.8b06804.
  • J. Yao, H. Wang, M. Chen and M. Yang, “Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine,” Microchim. Acta, vol. 186, no. 6, pp. 1–25, 2019. DOI: 10.1007/s00604-019-3458-x.
  • X. Ma, L. Yang, G. Xu and J. Song, “A comprehensive review of MXene-based nanofluids: preparation, stability, physical properties, and applications,” J. Mol. Liq., vol. 365, pp. 120037, 2022. DOI: 10.1016/j.molliq.2022.120037.
  • X. Ma, L. Yang, J. Song, W. Jiang, X. Li and X. Wu, “Investigation on the stability, thermal conductivity and viscosity of MXene/water nanofluids and development of ANN models,” Powder Technol., vol. 427, pp. 118686, 2023. DOI: 10.1016/j.powtec.2023.118686.
  • K. S. Ranjith, et al., “Hybridized 1D–2D MnMoO4–MXene nanocomposites as high-performing electrochemical sensing platform for the sensitive detection of dihydroxybenzene isomers in wastewater samples,” J. Hazard Mater., vol. 421, pp. 126775, 2022. DOI: 10.1016/j.jhazmat.2021.126775.
  • J. Sun, et al., “Recent advances of MXene as promising catalysts for electrochemical nitrogen reduction reaction,” Chin. Chem. Lett., vol. 31, no. 4, pp. 953–960, 2020. DOI: 10.1016/j.cclet.2020.01.035.
  • X. Lin, et al., “Fascinating MXene nanomaterials: emerging opportunities in the biomedical field,” Biomater. Sci., vol. 9, no. 16, pp. 5437–5471, 2021. DOI: 10.1039/d1bm00526j.
  • T. Kshetri, et al., “Recent advances in MXene-based nanocomposites for electrochemical energy storage applications,” Progress Mater. Sci., vol. 117, pp. 100733, 2021. DOI: 10.1016/j.pmatsci.2020.100733.
  • Y. Dong, H. Shi and Z. S. Wu, “Recent advances and promise of MXene‐based nanostructures for high‐performance metal ion batteries,” Adv. Funct. Mater., vol. 30, no. 47, pp. 2000706, 2020. DOI: 10.1002/adfm.202000706.
  • Y. Wei, P. Zhang, R. A. Soomro, Q. Zhu and B. Xu, “Advances in the synthesis of 2D MXenes,” Adv. Mater., vol. 33, no. 39, pp. 2103148, 2021. DOI: 10.1002/adma.202103148.
  • P. Ziółkowski, et al., “Thermodynamic analysis of negative CO2 emission power plant using Aspen Plus, Aspen Hysys, and Ebsilon software,” Energies, vol. 14, no. 19, pp. 6304, 2021. DOI: 10.3390/en14196304.
  • P. Ziółkowski, K. Stasiak, M. Amiri and D. Mikielewicz, “Negative carbon dioxide gas power plant integrated with gasification of sewage sludge,” Energy, vol. 262, pp. 125496, 2023. DOI: 10.1016/j.energy.2022.125496.
  • M. Amiri, J. Mikielewicz and D. Mikielewicz, “CO2 capture using steam ejector condenser under electro hydrodynamic actuator with non-condensable gas and cyclone separator: a numerical study,” Sep. Purif. Technol., vol. 329, pp. 125236, 2024. DOI: 10.1016/j.seppur.2023.125236.
  • D. Mikielewicz, M. Amiri, M. Klugmann and J. Mikielewicz, “A novel concept of enhanced direct-contact condensation of vapour-inert gas mixture in a spray ejector condenser,” Int. J. Heat Mass Transf., vol. 216, pp. 124576, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.124576.
  • P. Madejski, et al., “Development of a spray-ejector condenser for the use in a negative CO2 emission gas power plant,” Energy, vol. 283, pp. 129163, 2023. DOI: 10.1016/j.energy.2023.129163.
  • M. Amiri, P. Ziółkowski, K. Stasiak, M. Ditaranto, S. Wiseman and D. Mikielewicz, “Numerical simulation of cold flow and combustion in a swirl stabilized combustor,", 2023.
  • P. Ziółkowski, et al., “Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant,” Energy, vol. 244, pp. 122601, 2022. DOI: 10.1016/j.energy.2021.122601.
  • Negative CO2 Emission Gas Power Plant, https://nco2pp.mech.pg.gda.pl/pl, 2020.
  • M. Amiri, M. Klugmann, J. Mikielewicz, P. Ziolkowski and D. Mikielewicz, “CO2 capture through direct-contact condensation in a spray ejector condenser and T- junction separator,” Int. Commun. Heat Mass Transf., vol. 156, pp. 107596, 2024. DOI: 10.1016/j.icheatmasstransfer.2024.107596.
  • A. A. Minea, “Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches,” Int. J. Heat Mass Transf., vol. 104, pp. 852–860, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.012.
  • M. Naguib, et al., “Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2,” Adv. Mater., vol. 23, no. 37, pp. 4248–4253, 2011. DOI: 10.1002/adma.201102306.
  • X. Li, H. Wang, H. Zhang and L. Yang, “Comprehensive performance evaluation of Ti3C2 MXene/TiN composite nanofluids for photo thermal conversion,” Appl. Therm. Eng., vol. 228, pp. 120486, 2023. DOI: 10.1016/j.applthermaleng.2023.120486.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transf., vol. 11, no. 2, pp. 151–170, 1998. DOI: 10.1080/08916159808946559.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • H. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism. Oxford: Clarendon Press, 1873.
  • O. E. Olaleye, B. Van Ombele, A. A. Olusola and X. Li, “CFD modeling analysis of a vertical gas liquid separator,” J. Pet. Sci. Eng., vol. 216, pp. 110733, 2022. DOI: 10.1016/j.petrol.2022.110733.
  • R. Utikar, et al., “"Hydrodynamic simulation of cyclone separators,” in Computational Fluid Dynamics. inTech, Croatia, 2010, pp. 241–266.
  • S. Evran and M. Kurt, “Numerical analysis of fluid type and flow mass rate on logarithmic temperature difference and heat transfer coefficient of double pipe heat exchanger,” Numer. Heat Transf. Part A Appl., pp. 1–14, 2023. DOI: 10.1080/10407782.2023.2252173.
  • M. Amiri, M. B. Ayani, P. Ziolkowski and D. Mikielewicz, “Numerical analysis of vacuum drying of a porous body in the integrated domain,” J. Food Process Eng., vol. 45, no. 4, pp. e14006, 2022. DOI: 10.1111/jfpe.14006.
  • K. Biswas, P. K. Sinha, A. Mullick and B. Majumdar, “A Computational Analysis of Flow Development through a Constant Area C-Duct,” J. Eng. Res. Appl., vol. 5, pp. 69–73, 2015.
  • B. A. Saraç and T. Bali, “An experimental study on heat transfer and pressure drop characteristics of decaying swirl flow through a circular pipe with a vortex generator,” Exp. Therm. Fluid Sci., vol. 32, no. 1, pp. 158–165, 2007. DOI: 10.1016/j.expthermflusci.2007.03.002.
  • X. Li, et al., “Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors,” Energy Convers. Manage., vol. 226, pp. 113515, 2020. DOI: 10.1016/j.enconman.2020.113515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.