39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on 3D nucleate boiling over an oscillating base plate with high wall superheat and multiple nucleation sites

ORCID Icon, ORCID Icon &
Received 02 Apr 2024, Accepted 13 Jun 2024, Published online: 05 Jul 2024

References

  • G. Son, V. K. Dhir, and N. Ramanujapu, “Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface,” J. Heat Transfer, vol. 121, no. 3, pp. 623–631, 1999. DOI: 10.1115/1.2826025.
  • Y. Sato and B. Niceno, “A depletable micro-layer model for nucleate pool boiling,” J. Comput. Phys., vol. 300, pp. 20–52, 2015. DOI: 10.1016/j.jcp.2015.07.046.
  • G. Huber, S. Tanguy, M. Sagan, and C. Colin, “Direct numerical simulation of nucleate pool boiling at large microscopic contact angle and moderate Jakob number,” Int. J. Heat Mass Transfer, vol. 113, pp. 662–682, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.083.
  • H. S. Raut, A. Bhattacharya, and A. Sharma, “Dual grid level set method based direct numerical simulations of nucleate boiling with oscillating base plate,” Int. J. Therm. Sci., vol. 162, pp. 106785, 2021. DOI: 10.1016/j.ijthermalsci.2020.106785.
  • S. S. Chirammel, J. S. Murallidharan, and A. Sharma, “Computational modelling and investigation of nucleate boiling with periodic exponential heat flux-based power-transients,” Int. J. Heat Mass Transfer, vol. 217, p. 124673, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.124673.
  • G. Son and V. K. Dhir, “Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes,” Int. J. Heat Mass Transfer, vol. 51, nos. 9–10, pp. 2566–2582, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.07.046.
  • Y. Sato and B. Niceno, “Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region,” Int. J. Heat Mass Transfer, vol. 105, pp. 505–524, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.018.
  • Y. Sato and B. Niceno, “Pool boiling simulation using an interface tracking method: From nucleate boiling to film boiling regime through critical heat flux,” Int. J. Heat Mass Transfer, vol. 125, pp. 876–890, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.131.
  • Y. Utaka, Y. Kashiwabara, and M. Ozaki, “Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure,” Int. J. Heat Mass Transfer, vol. 57, no. 1, pp. 222–230, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.031.
  • R. F. Gaertner, “Photographic study of nucleate pool boiling on a horizontal surface,” J. Heat Transfer, vol. 87, no. 1, pp. 17–27, 1965. DOI: 10.1115/1.3689038.
  • V. Prisniakov, I. V. Navruzov, P. Mamontov, V. Serebrianskii, and A. Stoichev, “Heat exchange of the vibrating heat source within the liquid capacity,” Space Technol. Sci., vol. 1, pp. 871–877, 1990.
  • Z. Vinko and A. Naim, “Boiling heat transfer from oscillating surface,” J. Enhanced Heat Transfer, vol. 1, no. 2, pp. 191–196, 1994. DOI: 10.1615/JEnhHeatTransf.v1.i2.80.
  • S. Alangar, “Effect of boiling surface vibration on heat transfer,” Heat Mass Transfer, vol. 53, no. 1, pp. 73–79, 2017. DOI: 10.1007/s00231-016-1803-8.
  • F. Gibou, L. Chen, D. Nguyen, and S. Banerjee, “A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change,” J. Comput. Phys., vol. 222, no. 2, pp. 536–555, 2007. DOI: 10.1016/j.jcp.2006.07.035.
  • S. Tanguy, T. Ménard, and A. Berlemont, “A level set method for vaporizing two-phase flows,” J. Comput. Phys., vol. 221, no. 2, pp. 837–853, 2007. DOI: 10.1016/j.jcp.2006.07.003.
  • S. Tanguy, M. Sagan, B. Lalanne, F. Couderc, and C. Colin, “Benchmarks and numerical methods for the simulation of boiling flows,” J. Comput. Phys., vol. 264, pp. 1–22, 2014. DOI: 10.1016/j.jcp.2014.01.014.
  • B. Lalanne, L. R. Villegas, S. Tanguy, and F. Risso, “On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid method,” J. Comput. Phys., vol. 301, pp. 289–307, 2015. DOI: 10.1016/j.jcp.2015.08.036.
  • H. S. Raut, A. Bhattacharya, and A. Sharma, “Computational multifluid-structure interaction study on nucleate boiling under the effect of stationary or oscillating torus,” Int. J. Heat Mass Transfer, vol. 193, p. 122995, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122995.
  • R. H. Suresh, “Computational multi fluid structure interaction study on nucleate boiling under the effect of externally actuated surfaces,” Ph.D. thesis, Indian Institute of Technology Bombay, Mumbai, 2022.
  • J. Shaikh, A. Sharma, and R. Bhardwaj, “On sharp-interface dual-grid level-set method for two-phase flow simulation,” Numer. Heat Transfer, Part B: Fundam., vol. 75, no. 1, pp. 67–91, 2019. DOI: 10.1080/10407790.2019.1608761.
  • M. Kang, R. P. Fedkiw, and X.-D. Liu, “A boundary condition capturing method for multiphase incompressible flow,” J. Sci. Comput., vol. 15, no. 3, pp. 323–360, 2000. DOI: 10.1023/A:1011178417620.
  • G.-S. Jiang and D. Peng, “Weighted ENO schemes for Hamilton–Jacobi equations,” SIAM J. Sci. Comput., vol. 21, no. 6, pp. 2126–2143, 2000. DOI: 10.1137/S106482759732455X.
  • X.-D. Liu, R. P. Fedkiw, and M. Kang, “A boundary condition capturing method for poisson’s equation on irregular domains,” J. Comput. Phys., vol. 160, no. 1, pp. 151–178, 2000. DOI: 10.1006/jcph.2000.6444.
  • G. Son and V. K. Dhir, “Numerical simulation of film boiling near critical pressures with a level set method,” J. Heat Transfer, vol. 120, no. 1, pp. 183–192, 1998. DOI: 10.1115/1.2830042.
  • T. D. Aslam, “A partial differential equation approach to multidimensional extrapolation,” J. Comput. Phys., vol. 193, no. 1, pp. 349–355, 2004. DOI: 10.1016/j.jcp.2003.08.001.
  • C. Min, “On reinitializing level set functions,” J. Computat. Phys., vol. 229, no. 8, pp. 2764–2772, 2010. DOI: 10.1016/j.jcp.2009.12.032.
  • S. Balay et al., “PETSc users manual,” Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision 3.11, 2019.
  • S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management of parallelism in object oriented numerical software libraries,” in Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997, pp. 163–202.
  • V. Aggarwal, V. H. Gada, and A. Sharma, “Parallelization methodology and performance study for level-set-method-based simulation of a 3-D transient two-phase flow,” Numer. Heat Transfer, Part B: Fundam., vol. 63, no. 4, pp. 327–356, 2013. DOI: 10.1080/10407790.2013.771995.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys., vol. 114, no. 1, pp. 146–159, 1994. DOI: 10.1006/jcph.1994.1155.
  • W. M. Kays, Convective Heat and Mass Transfer. New York: Tata McGraw-Hill Education, 2012.
  • L. Zhang, Z.-D. Li, K. Li, H.-X. Li, and J.-F. Zhao, “Influence of heater thermal capacity on bubble dynamics and heat transfer in nucleate pool boiling,” Appl. Therm. Eng., vol. 88, pp. 118–126, 2015. DOI: 10.1016/j.applthermaleng.2014.11.080.
  • T.-B. Nguyen, D. Liu, H. Raut, A. Bhattacharya, A. Sharma, and T. Tran, “Enhancement of convective heat transfer using magnetically flapping fin array,” Int. Commun. Heat Mass Transfer, vol. 129, p. 105638, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105638.
  • H. S. Raut, A. Bhattacharya, and A. Sharma, “Sustaining nucleate boiling in zero gravity using asymmetric sinusoidal base-plate oscillation,” Int. J. Heat Mass Transfer, vol. 184, p. 122262, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122262.
  • H. S. Raut, A. Bhattacharya, and A. Sharma, “A dual grid-based deep reinforcement learning and computational fluid dynamics method for flow control and its application to nucleate pool boiling,” Int. J. Heat Mass Transfer, vol. 227, p. 125561, 2024. DOI: 10.1016/j.ijheatmasstransfer.2024.125561.
  • L. Li, S. Sherwin, and P. W. Bearman, “A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies,” Numer. Methods Fluids, vol. 38, no. 2, pp. 187–206, 2002. DOI: 10.1002/fld.216.
  • D. V. Lyubimov, T. P. Lyubimova, and S. V. Shklyaev, “Behavior of a drop on an oscillating solid plate,” Phys. Fluids, vol. 18, no. 1, p. 012101, 2006. DOI: 10.1063/1.2137358.
  • H. S. Raut, A. Bhattacharya, and A. Sharma, “Method and boiling system for providing nucleate boiling of fluid at zero gravity by surface oscillations,” IN Patent 507,595, 2024.
  • Y. Sato and B. Ničeno, “A sharp-interface phase change model for a mass-conservative interface tracking method,” J. Comput. Phys., vol. 249, pp. 127–161, 2013. DOI: 10.1016/j.jcp.2013.04.035.
  • W. Fritz, “Berechnung des maximalvolumes von dampfblasen,” Phys. Z., vol. 36, pp. 379–384, 1935.
  • V. K. Dhir, “Numerical simulations of pool-boiling heat transfer,” AIChE J., vol. 47, no. 4, pp. 813–834, 2001. DOI: 10.1002/aic.690470407.
  • H. Abarajith and V. Dhir, “A numerical study of the effect of contact angle on the dynamics of a single bubble during pool boiling,” in ASME International Mechanical Engineering Congress and Exposition, vol. 3638, 2002, pp. 467–475. DOI: 10.1115/IMECE2002-33876.
  • Y. Chang and Y. Ferng, “Experimental investigation on bubble dynamics and boiling heat transfer for saturated pool boiling and comparison data with previous works,” Appl. Therm. Eng., vol. 154, pp. 284–293, 2019. DOI: 10.1016/j.applthermaleng.2019.03.092.
  • C. Gerardi, J. Buongiorno, L. Hu, and T. McKrell, “Measurement of nucleation site density, bubble departure diameter and frequency in pool boiling of water using high-speed infrared and optical cameras,” 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.