36
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on heat generation in fast charging of lithium-ion batteries: Effect of charging rate and battery component thickness

, , & ORCID Icon
Received 24 Jan 2024, Accepted 21 Jun 2024, Published online: 08 Jul 2024

References

  • X. Lai et al., “Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective,” eTransportation, vol. 12, pp. 100169, 2022. DOI: 10.1016/j.etran.2022.100169.
  • Y. Li, K. Zhang, and S.-M. Chang, “Optimization of fin parameters in cooling systems for temperature uniformity enhancement in battery module applications with offset strip fins,” Numer. Heat Trans. A Appl., pp. 1–18, 2024. DOI: 10.1080/10407782.2024.2333043.
  • X. Yang, K. Doyle-Davis, X. Gao, and X. Sun, “Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries,” eTransportation, vol. 11, pp. 100152, 2022. DOI: 10.1016/j.etran.2021.100152.
  • Y. Zhang, W. Song, and Z. Feng, “An energy efficiency evaluation research based on heat generation behavior of lithium-ion battery,” J. Electrochem. Soc., vol. 160, no. 11, pp. A1927–A1930, 2013. DOI: 10.1149/2.021311jes.
  • S. Xin et al., “Roadmap for rechargeable batteries: present and beyond,” Sci. China Chem., vol. 67, no. 1, pp. 13–42, 2023. DOI: 10.1007/s11426-023-1908-9.
  • K. Zhang, Y. Li, and S.-M. Chang, “Thermofluidic analysis and optimization of installation spacing in a multiserpentine channeled cold plate for the liquid cooling of pouch-type battery cells,” Numer. Heat Trans. A Appl., vol. 84, no. 8, pp. 819–836, 2023. DOI: 10.1080/10407782.2022.2163941.
  • K. Kuratani et al., “Controlling of dispersion state of particles in slurry and electrochemical properties of electrodes,” J. Electrochem. Soc., vol. 166, no. 4, pp. A501–A506, 2019. DOI: 10.1149/2.0111904jes.
  • Z. An, L. Jia, L. Wei, C. Dang, and Q. Peng, “Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model,” Appl. Therm. Eng., vol. 137, pp. 792–807, 2018. DOI: 10.1016/j.applthermaleng.2018.04.014.
  • P. Peng and F. Jiang, “Thermal safety of lithium-ion batteries with various cathode materials: a numerical study,” Int. J. Heat Mass Transf., vol. 103, pp. 1008–1016, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.088.
  • Z. Li, J. Huang, B. Yann Liaw, V. Metzler, and J. Zhang, “A review of lithium deposition in lithium-ion and lithium metal secondary batteries,” J. Power Sources, vol. 254, pp. 168–182, 2014. DOI: 10.1016/j.jpowsour.2013.12.099.
  • A. Barré et al., “A review on lithium-ion battery ageing mechanisms and estimations for automotive applications,” J. Power Sources, vol. 241, pp. 680–689, 2013. DOI: 10.1016/j.jpowsour.2013.05.040.
  • H. Du et al., “Side reactions/changes in lithium‐ion batteries: mechanisms and strategies for creating safer and better batteries,” Adv. Mater., pp. e2401482, 2024. DOI: 10.1002/adma.202401482.
  • T. Sun et al., “Modeling the inhomogeneous lithium plating in lithium-ion batteries induced by non-uniform temperature distribution,” Electrochim. Acta, vol. 425, pp. 140701, 2022. DOI: 10.1016/j.electacta.2022.140701.
  • M. Yuan, H. Liu, and F. Ran, “Fast charging cathode materials for lithium & sodium ion batteries,” Mater. Today, vol. 63, pp. 360–379, 2023. DOI: 10.1016/j.mattod.2023.02.007.
  • D. Ren et al., “A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries,” eTransportation, vol. 2, pp. 100034, 2019. DOI: 10.1016/j.etran.2019.100034.
  • H. E. Ouazzani, I. E. Hassani, N. Barka, and T. Masrour, “MSCC-DRL: multi-stage constant current based on deep reinforcement learning for fast charging of lithium ion battery,” J. Energy Storage, vol. 75, pp. 109695, 2024. DOI: 10.1016/j.est.2023.109695.
  • X. Hu et al., “A control-oriented electrothermal model for pouch-type electric vehicle batteries,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5530–5544, 2021. DOI: 10.1109/TPEL.2020.3027561.
  • Y. Zhao, L. B. Diaz, Y. Patel, T. Zhang, and G. J. Offer, “How to cool lithium ion batteries: optimising cell design using a thermally coupled model,” J. Electrochem. Soc., vol. 166, no. 13, pp. A2849–A2859, 2019. DOI: 10.1149/2.0501913jes.
  • W. Song et al., “Non-uniform effect on the thermal/aging performance of lithium-ion pouch battery,” Appl. Therm. Eng., vol. 128, pp. 1165–1174, 2018. DOI: 10.1016/j.applthermaleng.2017.09.090.
  • P. Ping, Q. Wang, Y. Chung, and J. Wen, “Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions,” Appl. Energy, vol. 205, pp. 1327–1344, 2017. DOI: 10.1016/j.apenergy.2017.08.073.
  • M. Chen et al., “A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process,” Appl. Therm. Eng., vol. 120, pp. 506–516, 2017. DOI: 10.1016/j.applthermaleng.2017.03.135.
  • B. Wu, Z. Li, and J. Zhang, “Thermal design for the pouch-type large-format lithium-ion batteries,” J. Electrochem. Soc., vol. 162, no. 1, pp. A181–A191, 2015. DOI: 10.1149/2.0831501jes.
  • U. S. Kim, C. B. Shin, and C.-S. Kim, “Effect of electrode configuration on the thermal behavior of a lithium-polymer battery,” J. Power Sources, vol. 180, no. 2, pp. 909–916, 2008. DOI: 10.1016/j.jpowsour.2007.09.054.
  • W. Liu et al., “An electric-thermal coupling modeling method for lithium-ion battery using the state of charge normalization calculation method,” J. Energy Storage, vol. 72, pp. 108724, 2023. DOI: 10.1016/j.est.2023.108724.
  • Z. Xu, C. Zhang, B. Sun, and S. Liu, “The electric-thermal coupling simulation and state estimation of lithium-ion battery,” J. Energy Storage, vol. 58, pp. 106431, 2023. DOI: 10.1016/j.est.2022.106431.
  • J. He et al., “A lumped electro-thermal model for a battery module with a novel hybrid cooling system,” Appl. Therm. Eng., vol. 221, pp. 119874, 2023. DOI: 10.1016/j.applthermaleng.2022.119874.
  • P. Nie et al., “Full-cycle electrochemical-thermal coupling analysis for commercial lithium-ion batteries,” Appl. Therm. Eng., vol. 184, pp. 116258, 2021. DOI: 10.1016/j.applthermaleng.2020.116258.
  • P. M. Muñoz, R. M. Humana, T. Falagüerra, and G. Correa, “Parameter optimization of an electrochemical and thermal model for a lithium-ion commercial battery,” J. Energy Storage, vol. 32, pp. 101803, 2020. DOI: 10.1016/j.est.2020.101803.
  • S. Liu et al., “Experimental and simulation study on thermal characteristics of 18,650 lithium–iron–phosphate battery with and without spot–welding tabs,” Appl. Therm. Eng., vol. 166, pp. 114648, 2020. DOI: 10.1016/j.applthermaleng.2019.114648.
  • M. Xu, R. Wang, B. Reichman, and X. Wang, “Modeling the effect of two-stage fast charging protocol on thermal behavior and charging energy efficiency of lithium-ion batteries,” J. Energy Storage, vol. 20, pp. 298–309, 2018. DOI: 10.1016/j.est.2018.09.004.
  • Z. An, L. Jia, L. Wei, and C. Yang, “Numerical modeling and analysis of thermal behavior and Li + transport characteristic in lithium-ion battery,” Int. J. Heat Mass Transf., vol. 127, pp. 1351–1366, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.147.
  • X. Zhang, X. Chang, Y. Shen, and Y. Xiang, “Electrochemical-electrical-thermal modeling of a pouch-type lithium ion battery: an application to optimize temperature distribution,” J. Energy Storage, vol. 11, pp. 249–257, 2017. DOI: 10.1016/j.est.2017.03.008.
  • M. Ghalkhani, F. Bahiraei, G.-A. Nazri, and M. Saif, “Electrochemical–thermal model of pouch-type lithium-ion batteries,” Electrochim. Acta, vol. 247, pp. 569–587, 2017. DOI: 10.1016/j.electacta.2017.06.164.
  • J. Wang, J. Meng, Q. Peng, T. Liu, and J. Peng, “An electrochemical-thermal coupling model for lithium-ion battery state-of-charge estimation with improve dual particle filter framework,” J. Energy Storage, vol. 87, pp. 111473, 2024. DOI: 10.1016/j.est.2024.111473.
  • X.-W. Lin et al., “Non-uniform thermal characteristics investigation of three-dimensional electrochemical-thermal coupled model for pouch lithium-ion battery,” J. Clean. Prod., vol. 417, pp. 137912, 2023. DOI: 10.1016/j.jclepro.2023.137912.
  • S. Kosch, A. Rheinfeld, S. V. Erhard, and A. Jossen, “An extended polarization model to study the influence of current collector geometry of large-format lithium-ion pouch cells,” J. Power Sources, vol. 342, pp. 666–676, 2017. DOI: 10.1016/j.jpowsour.2016.12.110.
  • S. Goutam et al., “Three-dimensional electro-thermal model of li-ion pouch cell: analysis and comparison of cell design factors and model assumptions,” Appl. Therm. Eng., vol. 126, pp. 796–808, 2017. DOI: 10.1016/j.applthermaleng.2017.07.206.
  • M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, “Comparison of modeling predictions with experimental data from plastic lithium ion cells,” J. Electrochem. Soc., vol. 143, no. 6, pp. 1890–1903, 1996. DOI: 10.1149/1.1836921.
  • M. Doyle, T. F. Fuller, and J. Newman, “Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell,” J. Electrochem. Soc., vol. 140, no. 6, pp. 1526–1533, 1993. DOI: 10.1149/1.2221597.
  • D. Bernardi, E. Pawlikowski, and J. Newman, “A general energy balance for battery systems,” J. Electrochem. Soc., vol. 132, no. 1, pp. 5–12, 1985. DOI: 10.1149/1.2113792.
  • R. Zhao, J. Gu, and J. Liu, “An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations,” J. Power Sources, vol. 266, pp. 422–432, 2014. DOI: 10.1016/j.jpowsour.2014.05.034.
  • R. Zhao, J. Liu, and J. Gu, “The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery,” Appl. Energy, vol. 139, pp. 220–229, 2015. DOI: 10.1016/j.apenergy.2014.11.051.
  • Y. Lai et al., “Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates,” Int. J. Hydrogen Energy, vol. 40, no. 38, pp. 13039–13049, 2015. DOI: 10.1016/j.ijhydene.2015.07.079.
  • C. Fear et al., “Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating,” Energy Storage Mater., vol. 35, pp. 500–511, 2021. DOI: 10.1016/j.ensm.2020.11.029.
  • D. Ren et al., “Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model,” J. Electrochem. Soc., vol. 165, no. 10, pp. A2167–A2178, 2018. DOI: 10.1149/2.0661810jes.
  • A. Samba et al., “Impact of tab location on large format lithium-ion pouch cell based on fully coupled tree-dimensional electrochemical-thermal modeling,” Electrochim. Acta, vol. 147, pp. 319–329, 2014. DOI: 10.1016/j.electacta.2014.08.115.
  • L. O. Valøen and J. N. Reimers, “Transport properties of LiPF6-based li-ion battery electrolytes,” J. Electrochem. Soc., vol. 152, no. 5, pp. A882–A891, 2005. DOI: 10.1149/1.1872737.
  • S. Chen, Q. Zhang, F. Wang, D. Wang, and Z. He, “An electrochemical-thermal-aging effects coupled model for lithium-ion batteries performance simulation and state of health estimation,” Appl. Therm. Eng., vol. 239, pp. 122128, 2024. DOI: 10.1016/j.applthermaleng.2023.122128.
  • W. Mei, H. Chen, J. Sun, and Q. Wang, “Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective,” Appl. Therm. Eng., vol. 142, pp. 148–165, 2018. DOI: 10.1016/j.applthermaleng.2018.06.075.
  • D. Liu, L. Li, Y. Song, L. Wu, and Y. Peng, “Hybrid state of charge estimation for lithium-ion battery under dynamic operating conditions,” Int. J. Electr. Power Energy Syst., vol. 110, pp. 48–61, 2019. DOI: 10.1016/j.ijepes.2019.02.046.
  • W. Mei et al., “Three-dimensional layered electrochemical-thermal model for a lithium-ion pouch cell. Part II. The effect of units number on the performance under adiabatic condition during the discharge,” Int. J. Heat Mass Transf., vol. 148, pp. 119082, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119082.
  • Y. Kim, X. Lin, A. Abbasalinejad, S. U. Kim, and S. H. Chung, “On state estimation of all solid-state batteries,” Electrochim. Acta, vol. 317, pp. 663–672, 2019. DOI: 10.1016/j.electacta.2019.06.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.