29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of flow and heat transfer characteristics around two tandem and side-by-side cylinders using double-distribution lattice Boltzmann method

, ORCID Icon, & ORCID Icon
Received 29 Feb 2024, Accepted 21 Jun 2024, Published online: 04 Jul 2024

References

  • B. Yang, B. Liang, Q. Zhang, X. Meng, K. Matvey and A. Epikhin, “Numerical investigation of flow around two cylinders in tandem above a scoured bed,” Phys. Fluids, vol. 34, no. 8, pp. 087102, 2022. DOI: 10.1063/5.0098470.
  • M. M. Zdravkovich, “Review of flow interference between two circular cylinders in various arrangements,” J Fluids Eng., vol. 99, no. 4, pp. 618–633, 1977. DOI: 10.1115/1.3448871.
  • J. Mizushima and N. Suehiro, “Instability and transition of flow past two tandem circular cylinders,” Phys. Fluids, vol. 17, no. 10, pp. 104107, 2005. DOI: 10.1063/1.2104689.
  • B. Sharman, F. S. Lien, L. Davidson and C. Norberg, “Numerical predictions of low Reynolds number flows over two tandem circular cylinders,” Int. J. Numer. Meth. Fluids, vol. 47, no. 5, pp. 423–447, 2005. DOI: 10.1002/fld.812.
  • B. S. Carmo and J. R. Meneghini, “Numerical investigation of the flow around two circular cylinders in tandem,” J. Fluids Struct., vol. 22, no. 6-7, pp. 979–988, 2006. DOI: 10.1016/j.jfluidstructs.2006.04.016.
  • H. Zhang and W. H. Melbourne, “Interference between two circular cylinders in tandem in turbulent flow,” J. Wind. Eng. Ind. Aerodyn, vol. 41, no. 1-3, pp. 589–600, 1992. DOI: 10.1016/0167-6105(92)90468-P.
  • S. Singha and K. P. Sinhamahapatra, “High-Resolution Numerical Simulation of Low Reynolds Number Incompressible Flow About Two Cylinders in Tandem,” J. Fluids Eng., vol. 132, no. 1, pp. 011101, 2010. DOI: 10.1115/1.4000649.
  • V. D. Duong, V. D. Nguyen, V. T. Nguyen and I. L. Ngo, “Low-Reynolds-number wake of three tandem elliptic cylinders,” Phys. Fluids, vol. 34, no. 4, pp. 043605, 2022. DOI: 10.1063/5.0086685.
  • R. An and X. Zhang, “Conjugate heat transfer and flow around tandem tubes: effect of thermophysical parameters and tube arrangement,” Int. J. Therm. Sci., vol. 191, pp. 108353, 2023. DOI: 10.1016/j.ijthermalsci.2023.108353.
  • A. Sohankar, M. Khodadadi, E. Rangraz and M. M. Alam, “Control of flow and heat transfer over two inline square cylinders,” Phys. Fluids, vol. 31, no. 12, pp. 123604, 2019. DOI: 10.1063/1.5128751.
  • F. Zafar and M. M. Alam, “A low reynolds number flow and heat transfer topology of a cylinder in a wake,” Phys. Fluids, vol. 30, no. 8, pp. 083603, 2018. DOI: 10.1063/1.5035105.
  • H. Nemati, M. Farhadi, K. Sedighi, M. M. Pirouz and N. N. Abatari, “Convective heat transfer from two rotating circular cylinders in tandem arrangement by using lattice Boltzmann method,” Appl. Math. Mech.-Engl. Ed, vol. 33, no. 4, pp. 427–444, 2012. DOI: 10.1007/s10483-012-1561-6.
  • M. R. Rastan, A. Sohankar and M. M. Alam, “Flow and heat transfer across two inline rotating cylinders: effects of blockage, gap spacing, Reynolds number, and rotation direction,” Int. J. Heat Mass Transf., vol. 174, pp. 121324, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121324.
  • W. Zhang, X. Chen, H. Yang, H. Liang and Y. Wei, “Forced convection for flow across two tandem cylinders with rounded corners in a channel,” Int. J. Heat Mass Transfer., vol. 130, pp. 1053–1069, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.125.
  • P. W. Bearman and A. J. Wadcock, “The interaction between a pair of circular cylinders normal to a stream,” J. Fluid Mech., vol. 61, no. 3, pp. 499–511, 1973. DOI: 10.1017/S0022112073000832.
  • M. M. Zdravkovich, “The effects of interference between circular cylinders in cross flow,” J. Fluids Struct., vol. 1, no. 2, pp. 239–261, 1987. DOI: 10.1016/S0889-9746(87)90355-0.
  • M. M. Alam, M. Moriya and H. Sakamoto, “Aerodynamic characteristics of two side by side circular cylinders and application of wavelet analysis on the switching phenomenon,” J. Fluids Struct., vol. 18, no. 3-4, pp. 325–346, 2003. DOI: 10.1016/j.jfluidstructs.2003.07.005.
  • S. Kang, “Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers,” Phys. Fluids, vol. 15, no. 9, pp. 2486–2498, 2003. DOI: 10.1063/1.1596412.
  • Y. Xu, Y. Liu, Y. Xia and F. Wu, “Lattice-Boltzmann simulation of two-dimensional flow over two vibrating side-by-side circular cylinders,” Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., vol. 78, no. 4 Pt 2, pp. 046314, 2008. DOI: 10.1103/PhysRevE.78.046314.
  • H. Yamamoto and N. Hattori, “Flow and heat transfer around a single row of circular cylinder,” Heat Trans. Jpn. Res., vol. 25, no. 3, pp. 192–200, 1996. DOI: 10.1002/(sici)1520-6556(1996)25:3<192::aid-htj5>3.0.co;2-s.
  • J. Sourabh and A. Kameswararao, “Near-wake flow and thermal characteristics of three side-by-side circular cylinders for large temperature differences using large-eddy simulation,” Int. J. Heat Mass Transf., vol. 184, pp. 122324, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122324.
  • H. S. Yoon, J. H. Seo and J. H. Kim, “Laminar forced convection heat transfer around two rotating side-by-side circular cylinder,” J. Heat Mass Transf., vol. 53, no. 21-22, pp. 4525–4535, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.041.
  • N. S. K. Chaitanya and A. K. Dhiman, “Non-Newtonian power-law flow and heat transfer across a pair of side-by-side circular cylinders,” J. Heat Mass Transf., vol. 55, no. 21-22, pp. 5941–5958, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.06.005.
  • C. N. V. V. Krishna and C. Dipankar, “Mixed convective flow past counter-rotating side-by-side cylinders at low Reynolds number,” Numer Heat TR A-Appl., vol. 83, no. 455, pp. 1–19, 2023. DOI: 10.1080/10407782.2022.2084300.
  • L. Li, J. Liu and Z. Pan, “Enhancement of heat transfer and mixing with two side-by-side freely rotatable cylinders in microchannel,” Int. J. Heat Mass. Transfer., vol. 189, pp. 122717, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122717.
  • D. P. Ziegler, “Boundary conditions for lattice Boltzmann simulations,” J. Stat. Phys., vol. 71, no. 5-6, pp. 1171–1177, 1993. DOI: 10.1007/BF01049965.
  • C.-H. Liu, K.-H. Lin, H.-C. Mai and C.-A. Lin, “Thermal boundary conditions for thermal lattice Boltzmann simulations,” Comput. Math. Appl., vol. 59, no. 7, pp. 2178–2193, 2010. DOI: 10.1016/j.camwa.2009.08.043.
  • C. Obrecht, F. Kuznik, B. Tourancheau and J. Roux, “Multi-GPU implementation of the lattice Boltzmann method,” Comput. Math. Appl., vol. 65, no. 2, pp. 252–261, 2013. DOI: 10.1016/j.camwa.2011.02.020.
  • Y. H. Qian, D. D’Humières and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” Europhys. Lett., vol. 17, no. 6, pp. 479–484, 1992. DOI: 10.1209/0295-5075/17/6/001.
  • Y. Wei, et al., “Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability,” Phys. Rev. E, vol. 105, no. 1-2, pp. 015103, 2022. DOI: 10.1103/physreve.105.015103.
  • M. Nemati, M. Sefid, A. Karimipour and A. J. Chamkha, “Computational thermal performance analysis by LBM for cooling a hot oval object via magnetohydrodynamics non-Newtonian free convection by using magneto-ferrofluid,” J. Magn. Magn. Mater., vol. 577, pp. 170797, 2023. DOI: 10.1016/j.jmmm.2023.170797.
  • Z. Wang, Y. Wei and Y. Qian, “A bounce back-immersed boundary-lattice Boltzmann model for curved boundary,” Appl. Math. Model., vol. 81, pp. 428–440, 2020. DOI: 10.1016/j.apm.2020.01.012.
  • M. Nemati and M. Sefid, “The possibility of availing active and passive methods to achieve a flow with desirable characteristics via using the lattice Boltzmann method,” Eng. Anal. Boundary Elem., vol. 146, pp. 786–807, 2023. DOI: 10.1016/j.enganabound.2022.11.023.
  • Z. Wang, Y. Wei and Y. Qian, “A simple direct heating thermal immersed boundary-lattice Boltzmann method for its application in incompressible flow,” Comput. Math. Appl., vol. 80, no. 6, pp. 1633–1649, 2020. DOI: 10.1016/j.camwa.2020.08.003.
  • M. Nemati and M. Sefid, “Using active/passive methods to control of MHD conjugate heat transfer of power-law fluids: a numerical entropy analysis by LBM,” Int. J. Energy Environ. Eng., vol. 14, no. 4, pp. 719–741, 2023. DOI: 10.1007/s40095-022-00545-x.
  • S. Chapman, T. G. Cowling and D. Park, “The mathematical theory of non-uniform gases,” Am. J. Phys., vol. 30, no. 5, pp. 389–389, 1962. DOI: 10.1119/1.1942035.
  • G. S. West and C. J. Apelt, “Fluctuating lift and drag forces on finite lengths of a circular cylinder in the subcritical reynolds number range,” J. Fluids Struct., vol. 11, no. 2, pp. 135–158, 1997. DOI: 10.1006/jfls.1996.0070.
  • Z. Wang, Y. Wei and Y. Qian, “A novel thermal lattice Boltzmann model with heat source and its application in incompressible flow,” Appl. Math. Comput., vol. 427, pp. 127167, 2022. DOI: 10.1016/j.amc.2022.127167.
  • Z. Guo, B. Shi and C. Zheng, “A coupled lattice BGK model for the Boussinesq equations,” Numerical Methods Fluids, vol. 39, no. 4, pp. 325–342, 2002. DOI: 10.1002/fld.337.
  • S. Tao, J. Hu and Z. Guo, “An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows,” Comput. Fluids, vol. 133, pp. 1–14, 2016. DOI: 10.1016/j.compfluid.2016.04.009.
  • O. Filippova and D. Hänel, “Grid refinement for lattice-BGK models,” J. Comput. Phys., vol. 147, no. 1, pp. 219–228, 1998. DOI: 10.1006/jcph.1998.6089.
  • C.-L. Lin and Y. G. Lai, “Lattice boltzmann method on composite grids,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip Topics, vol. 62, no. 2 Pt A, pp. 2219–2225, 2000. DOI: 10.1103/PhysRevE.62.2219.
  • Q. Chen, X. Zhang and J. Zhang, “Effects of reynolds and prandtl numbers on heat transfer around a circular cylinder by the simplified thermal lattice boltzmann model,” Commun. Comput. Phys, vol. 17, no. 4, pp. 937–959, 2015. DOI: 10.4208/cicp.2014.m314.
  • J. G. Knudsen, D. L. Katz and R. E. Street, “Fluid dynamics and heat transfer,” Phys. Today, vol. 12, no. 3, pp. 40–44, 1959. DOI: 10.1063/1.3060727.
  • S. W. Churchill and M. Bernstein, “A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow,” J. Heat Transfer, vol. 99, no. 2, pp. 300–306, 1977. DOI: 10.1115/1.3450685.
  • S.-L. Cao, X. Sun, J.-Z. Zhang and Y.-X. Zhang, “Forced convection heat transfer around a circular cylinder in laminar flow: an insight from Lagrangian coherent structures,” Phys. Fluids, vol. 33, no. 6, pp. 067104, 2021. DOI: 10.1063/5.0049219.
  • N. Mahír and Z. Altaç, “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1309–1318, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.05.001.
  • M. Braza, P. Chassaing and H. H. Minh, “Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder,” J. Fluid Mech., vol. 165, no. 1, pp. 79–130, 1986. DOI: 10.1017/S0022112086003014.
  • M. Yu, G. Jiang, Y. Jiang, W. Zhang and J. Sun, “Effect of acoustic waves on the flow and heat transfer around two tandem arranged cylinders,” Case Stud. Therm. Eng., vol. 40, pp. 102573, 2022. DOI: 10.1016/j.csite.2022.102573.
  • D. J. Tritton, “Experiments on the flow gast a circular cylinder at low reynolds numbers,” J. Fluid Mech., vol. 6, no. 4, pp. 547–567, 1959. DOI: 10.1017/S0022112059000829.
  • C. Norberg, “Fluctuating lift on a circular cylinder: review and new measurements,” J. Fluids Struct., vol. 17, no. 1, pp. 57–96, 2003. DOI: 10.1016/S0889-9746(02)00099-3.
  • Y. Zhou, Z. Wang, Y. Qian, H. Yang and Y. Wei, “Numerical simulation of the flow around two square cylinders using the lattice Boltzmann method,” Phys. Fluids, vol. 33, no. 3, pp. 037110, 2021. DOI: 10.1063/5.0040020.
  • M. M. Zdravkovich, “Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements,” J. Wind. Eng. Ind. Aerodyn, vol. 28, no. 1-3, pp. 183–199, 1988. DOI: 10.1016/B978-0-444-87156-5.50029-1.
  • L. Ljungkrona and B. Sundén, “Flow visualization and surface pressure measurement on two tubes in an inline arrangement,” Exp. Therm. Fluid Sci., vol. 6, no. 1, pp. 15–27, 1993. DOI: 10.1016/0894-1777(93)90037-J.
  • L. Ljungkrona, C. Norberg and B. Sunden, “Free-stream turbulence and tube spacing effects on surface pressure fluctuations for two tubes in an in-line arrangement,” J. Fluids Struct., vol. 5, no. 6, pp. 701–727, 1991. DOI: 10.1016/0889-9746(91)90364-U.
  • M. M. Alam, M. Moriya, K. Takai and H. Sakamoto, “Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number,” J. Wind Eng. Ind. Aerodyn., vol. 91, no. 1-2, pp. 139–154, 2003. DOI: 10.1016/S0167-6105(02)00341-0.
  • G. Xu and Y. Zhou, “Strouhal numbers in the wake of two inline cylinders,” Exp. Fluids, vol. 37, no. 2, pp. 248–256, 2004. DOI: 10.1007/s00348-004-0808-0.
  • B. J. Armstrong, F. H. Barnes and I. Grant, “A comparison of the structure of the wake behind a circular cylinder in a steady flow with that in a perturbed flow,” Phys. Fluids, vol. 30, no. 1, pp. 19–26, 1987. DOI: 10.1063/1.866170.
  • D. Sumner, “Two circular cylinders in cross-flow: a review,” J. Fluids Struct., vol. 26, no. 6, pp. 849–899, 2010. DOI: 10.1016/j.jfluidstructs.2010.07.001.
  • T. Igarashi, “Characteristics of the flow around two circular cylinders arranged in tandem: 1st report,” Bull. JSME, vol. 24, no. 188, pp. 323–331, 1981. DOI: 10.1299/jsme1958.24.323.
  • M. Yang, J. Liu, Q. Yue, Y. Ding and M. Wang, “Numerical simulation on the vortex-induced collision of two side-by-side cylinders,” J. Theor. Appl. Mech., vol. 51, no. 6, pp. 1785–1796, 2019. DOI: 10.6052/0459-1879-19-224.
  • Y. Zhou, H. J. Zhang and M. W. Yiu, “The turbulent wake of two side-by-side circular cylinders,” J. Fluid Mech., vol. 458, pp. 303–332, 2002. DOI: 10.1017/S0022112002007887.
  • C. H. K. Williamson, “Evolution of a single wake behind a pair of bluff bodies,” J. Fluid Mech., vol. 159, no. 1, pp. 1–18, 1985. DOI: 10.1017/S002211208500307X.
  • O. Inoue, W. Iwakami and N. Hatakeyama, “Aeolian tones radiated from flow past two square cylinders in a side-by-side arrangement,” Phys. Fluids, vol. 18, no. 4, pp. 046104, 2006. DOI: 10.1063/1.2191847.
  • A. K. Sahu, R. P. Chhabra and V. Eswaran, “Two-dimensional unsteady laminar flow of a power law fluid across a square cylinder,” J. Nonnewton Fluid Mech., vol. 160, no. 2-3, pp. 157–167, 2009. DOI: 10.1016/j.jnnfm.2009.03.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.