26
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A simulation based analysis for enhancement of performances of turbine blades in turbo jet engines with thermal barrier coatings (TBCs)

& ORCID Icon
Received 21 Dec 2023, Accepted 28 Jun 2024, Published online: 09 Jul 2024

References

  • H. Saravanamuttoo, G. Rogers and P. Straznicky, “Introduction,” In Gas Turbine Theory. 6th ed. Essex, UK: Pearson Education Limited; 2009, pp. 2–3.
  • J. B. Young and J. H. Horlock, “Defining the efficiency of a cooled turbine,” ASME J. Turbomach., vol. 128, no. 4, pp. 658–667, 2006. DOI: 10.1115/1.2218890.
  • L. Torbidoni and F. Massardo Aristide, “Analytical blade row cooling model for innovative gas turbine cycle evaluations supported by semi-empirical air-cooled blade data,” ASME J. Eng. Gas Turbine Power, vol. 126, no. 3, pp. 498–506, 2004. DOI: 10.1115/1.1707030.
  • J.C. Han, M. Huh, “Recent studies in turbine blade internal cooling,” Heat Transf. Res., vol. 41, no. 14–15, pp. 1879–1888, 2010; Abdulrahman M. Al-Ibrahim, Abdulhadi Varnham, “A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia,” Appl. Therm. Eng. vol. 30, pp. 1879–1888, 2010. DOI: 10.1016/j.applthermaleng.2010.04.025.
  • M. Ameri, S. H. Hejazi and K. Montaser, “Performance and economic of the thermal energy storage systems to enhance the peaking capacity of the gas turbines,” Appl. Therm. Eng., vol. 25, no. 2–3, pp. 241–e251, 2006. DOI: 10.1016/j.applthermaleng.2004.05.012.
  • M. Yang, et al., “Preparation and thermophysical properties of Ti4+ doped zirconia matrix thermal barrier coatings,” J. Alloys Compound., vol. 777, pp. 646–654, 2019. DOI: 10.1016/j.jallcom.2018.11.034.
  • M. S. Sahith, G. Giridhara and R. S. Kumar, “Development and analysis of thermal barrier coatings on gas turbine blades–A review,” Mat. Today: Proc., vol. 5, no. 1, pp. 2746–2751, Jan. 1, 2018. DOI: 10.1016/j.matpr.2018.01.060.
  • J. H. Velasco, G. Kilaz, H. I. Kenttämaa and R. W. Trice, “Application of biofuel impurities and effect on the hot corrosion of yttria-stabilized zirconia thermal barrier coatings,” Surface Coatings Technol., vol. 358, pp. 340–346, 2019. DOI: 10.1016/j.surfcoat.2018.10.019.
  • J. K. Lee and H. G. Kim, “YSZ atmospheric plasma coating method for improved high temperature corrosion and wear resistance,” J Mech Sci Technol, vol. 34, no. 9, pp. 3629–3633, 2020. DOI: 10.1007/s12206-020-0815-y.
  • W. A. Ge, C. Y. Zhao and B. X. Wang, “Thermal radiation and conduction in functionally graded thermal barrier coatings. Part I: experimental study on radiative properties,” Int. J. Heat Mass Transf., vol. 134, pp. 101–113, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.018.
  • C. Zhao, et al., “Investigation on the performance of air plasma sprayed thermal barrier coating with Lu/Hf-doped NiAl bond coat,” Surface Coatings Technol., vol. 360, pp. 140–152, 2019. DOI: 10.1016/j.surfcoat.2019.01.005.
  • P. A. Roy and S. A. Meguid, “Modeling and characterization of bilayer containment ring in gas turbine engine,” Int. J. Comp. Methods Eng. Sci. Mech, vol. 21, no. 2, pp. 96–108, 2020. DOI: 10.1080/15502287.2020.1739779.
  • K. R. Sharma and G. Kumar, “Thermo-mechanical experiments of Y-PSZ thermal barrier ceramic coating with bond coat of alumina,” J. Inst. Eng. India Ser. C, vol. 96, no. 3, pp. 287–298, 2015. DOI: 10.1007/s40032-015-0172-2.
  • K. Praveen, S. Sivakumar, P. V. Ananthapadmanabhan and G. Shanmugavelayutham, “Lanthanum cerate thermal barrier coatings generated from thermal plasma synthesized powders,” Ceramics Int, vol. 44, no. 6, pp. 6417–6425, 2018. DOI: 10.1016/j.ceramint.2018.01.036.
  • H. M. Kwon, S. W. Moon, T. S. Kim, D. W. Kang, J. L. Sohn and J. Lee, “A study on 65% potential efficiency of the gas turbine combined cycle,” J Mech Sci Technol, vol. 33, no. 9, pp. 4535–4543, Sep. 2019. DOI: 10.1007/s12206-019-0850-8.
  • G. Venkadesan and J. Muthusamy, “Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine,” Ceramics Int, vol. 45, no. 3, pp. 3166–3176, Feb. 15, 2019. DOI: 10.2298/TSCI16S4189M.
  • B Zhang, W Song, L Wei, Y Xiu, H Xu, D B Dingwell and H Guo,“Novel thermal barrier coatings repel and resist molten silicate deposits”. Script Mater., vol. 163, pp. 71–76, Apr. 1, 2019. DOI: 10.1016/j.scriptamat.2018.12.028.
  • L. Guo, et al., “GdPO4 as a novel candidate for thermal barrier coating applications at elevated temperatures,” Surface Coatings Technol., vol. 349, pp. 400–406, 2018. Sep. 15, 2018. DOI: 10.1016/j.surfcoat.2018.06.016.
  • W. A. Ge, C. Y. Zhao and B. X. Wang, “Thermal radiation and conduction in functionally graded thermal barrier coatings. Part II: experimental thermal conductivities and heat transfer modeling,” Inter. J. Heat Mass Transf., vol. 134, pp. 166–174, May 1, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.017.
  • V. Sankar, P. B. Ramkumar, D. Sebastian, D. Joseph, J. Jose and A. Kurian, “Optimized thermal barrier coating for gas turbine blades,” Mater. Today: Proc., vol. 11, pp. 912–919, 2019. DOI: 10.1016/j.matpr.2018.12.018.
  • T. Sadowski and P. Golewski, “Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC),” Comput. Mater. Sci., vol. 50, no. 4, pp. 1326–1335, 2011. ISSN 09270256. DOI: 10.1016/j.commatsci.2010.05.032.
  • M. Perrut, P. Caron, M. Thomas and A. Couret, “High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys,” Comptes Rendus Phys., vol. 19, no. 8, pp. 657–671, Dec. 1, 2018. DOI: 10.1016/j.crhy.2018.10.002.
  • NACA., 4412 Airfoil data, 2022. Available: http://airfoiltools.com/airfoil/details?airfoil=naca4412.
  • R. Bolot, G. Antou, G. Montavon and C. Coddet, “A Two-dimensional heat transfer model for thermal barrier coating average thermal conductivity computation,” Numer. Heat Transf. Part A: Appl., vol. 47, no. 9, pp. 875–898, 2005. DOI: 10.1080/10407780590921953.
  • H. Wang, J. Li and H. Guo, “A method for roughness height prediction by particle deposition and its effect on flow and heat transfer in a turbine cascade,” Numer. Heat Transf. Part A: Appl., vol. 83, no. 10, pp. 1080–1094, 2023. DOI: 10.1080/10407782.2022.2102350.
  • R. Hou, F. Wen, X. Tang, T. Cui and S. Wang, “Improvement of film cooling performance by trenched holes on turbine leading-edge models,” Numer. Heat Transf. Part A: Appl., vol. 76, no. 3, pp. 160–177, 2019. DOI: 10.1080/10407782.2019.1627832.
  • K. Huang, J. Zhang, C. Wang and Y. Shan, “Numerical evaluation on single-row trenched-hole film cooling performances on turbine guide vane under engine-representative conditions,” Numer. Heat Transf. Part A: Appl., vol. 76, no. 4, pp. 198–219, 2019. DOI: 10.1080/10407782.2019.1627830.
  • S. Asghari and M. Salimi, “Finite element simulation of thermal barrier coating performance under thermal cycling,” Surf. Coat. Tech, vol. 205, no. 7, pp. 2042–2050, Dec. 25, 2010. DOI: 10.1016/j.surfcoat.2010.08.099.
  • A. Moridi, M. Azadi, and G. H. Farrahi, Numerical Simulation of Thermal Barrier Coating System under Thermo-Mechanical Lading. Proceedings of the World Congress on Engineering 2011 Vol III WCE 2011, July 6 - 8, 2011, London, U.K., 2011.
  • M. Bäker and P. Seiler, “A guide to finite element simulations of thermal barrier coatings,” J Therm Spray Tech, vol. 26, no. 6, pp. 1146–1160, Aug 2017. DOI: 10.1007/s11666-017-0592-z.
  • Q. Shen, S. Z. Li, L. Yang, Y. C. Zhou, Y. G. Wei and T. Yuan, “Coupled mechanical-oxidation modeling during oxidation of thermal barrier coatings,” Comput. Mater. Sci., vol. 154, pp. 538–546, 2018. ISSN 09270256. DOI: 10.1016/j.commatsci.2018.08.017.
  • M. Bäker and J. Rösler, “Simulation of crack propagation in thermal barrier coatings with friction,” Comput. Mater. Sci., vol. 52, no. 1, pp. 236–239, 2012. ISSN 09270256. DOI: 10.1016/j.commatsci.2011.01.010.
  • H. M. Tawancy, A. I. Mohammad, L. M. Al-Hadhrami, H. Dafalla and F. K. Alyousf, “On the performance and failure mechanism of thermal barrier coating systems used in as turbine blade applications: influence of bond coat/superalloy combination,” Eng. Failure Anal., vol. 57, pp. 1–20, 2015. ISSN 13506307. DOI: 10.1016/j.engfailanal.2015.07.023.
  • W. Zhu, J. W. Wang, L. Yang, Y. C. Zhou, Y. G. Wei and R. T. Wu, “Modeling and simulation of the temperature and stress fields in a 3D turbine blade coated with thermal barrier coatings,” Surface Coat. Technol., vol. 315, pp. 443–453, 2017. ISSN 02578972. DOI: 10.1016/j.surfcoat.2017.03.012.
  • M. Białas, “Finite element analysis of stress distribution in thermal barrier coatings,” Surface Coatings Technol., vol. 202, no. 24, pp. 6002–6010, 2008. DOI: 10.1016/j.surfcoat.2008.06.178.
  • J. Jiang, et al., “Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth,” Surface Coatings Technol., vol. 357, pp. 433–444, 2019. DOI: 10.1016/j.surfcoat.2018.10.020.
  • Y. Kim, et al., “TBC delamination life prediction by stress-based delamination map,” Int. J. Precis. Eng. Manuf.-Green Tech, vol. 4, no. 1, pp. 67–72, 2017. DOI: 10.1007/s40684-017-0009-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.