0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regression analysis of MHD conjugate natural convection of ferrofluid filled within a porous annular enclosure with inner heat generating solid cylinder using response surface methodology

, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Received 14 Apr 2024, Accepted 03 Jul 2024, Published online: 16 Jul 2024

References

  • T. H. Kuehn and R. J. Goldstein, “An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders,” J. Fluid Mech., vol. 74, no. 4, pp. 695–719, Apr 1976. DOI: 10.1017/S0022112076002012.
  • M. Sheikholeslami, M. A. Sheremet, A. Shafee and I. Tlili, “Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts,” Phys. Stat. Mech. Appl., vol. 550, pp. 124058, Jul 2020. DOI: 10.1016/j.physa.2019.124058.
  • M. Sheikholeslami, A. Arabkoohsar and K. A. R. Ismail, “Entropy analysis for a nanofluid within a porous media with magnetic force impact using non-Darcy model,” Int. Commun. Heat Mass Transf., vol. 112, pp. 104488, Mar 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104488.
  • A. Shadlaghani, M. Farzaneh, M. Shahabadi, M. R. Tavakoli, M. R. Safaei and I. Mazinani, “Numerical investigation of serrated fins on natural convection from concentric and eccentric annuli with different cross sections,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1429–1442, Jan 2019. DOI: 10.1007/s10973-018-7542-y.
  • Y. Shi, T. S. Zhao and Z. L. Guo, “Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus,” Comput. Fluids, vol. 35, no. 1, pp. 1–15, Jan 2006. DOI: 10.1016/j.compfluid.2004.11.003.
  • X. Yang and S.-C. Kong, “Numerical study of natural convection in a horizontal concentric annulus using smoothed particle hydrodynamics,” Eng. Anal. Bound. Elem., vol. 102, pp. 11–20, May 2019. DOI: 10.1016/j.enganabound.2019.02.007.
  • P. V. Ananth Subray, B. N. Hanumagowda, S. V. K. Varma and M. Hatami, “The impacts of shape factor and heat transfer on two-phase flow of nano and hybrid nanofluid in a saturated porous medium,” Sci. Rep., vol. 12, no. 1, pp. 21864, Dec 2022. DOI: 10.1038/s41598-022-26169-z.
  • H. A. Wahab, S. Zahir Hussain Shah, A. Ayub, Z. Sabir, R. Sadat and M. R. Ali, “Heterogeneous/homogeneous and inclined magnetic aspect of infinite shear rate viscosity model of Carreau fluid with nanoscale heat transport,” Arab. J. Chem., vol. 16, no. 5, pp. 104682, May 2023. DOI: 10.1016/j.arabjc.2023.104682.
  • M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji and S. Soleimani, “Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM,” Adv. Powder Technol., vol. 24, no. 6, pp. 980–991, Nov 2013. DOI: 10.1016/j.apt.2013.01.012.
  • S. Soleimani, M. Sheikholeslami, D. D. Ganji and M. Gorji-Bandpay, “Natural convection heat transfer in a nanofluid filled semi-annulus enclosure,” Int. Commun. Heat Mass Transf., vol. 39, no. 4, pp. 565–574, Apr 2012. DOI: 10.1016/j.icheatmasstransfer.2012.01.016.
  • M. Habibi Matin and I. Pop, “Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid,” Int. J. Heat Mass Transf., vol. 61, pp. 353–364, Jun 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.061.
  • M. A. Sheremet and I. Pop, “Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model,” Comput. Fluids, vol. 118, pp. 182–190, Sep 2015. DOI: 10.1016/j.compfluid.2015.06.022.
  • Y. Hu, D. Li, S. Shu and X. Niu, “Natural convection in a nanofluid-filled eccentric annulus with constant heat flux wall: a lattice Boltzmann study with immersed boundary method,” Int. Commun. Heat Mass Transf., vol. 86, pp. 262–273, Aug 2017. DOI: 10.1016/j.icheatmasstransfer.2017.05.015.
  • F. Selimefendigil and H. F. Öztop, “Conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field,” Int. J. Heat Mass Transf., vol. 108, pp. 156–171, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.080.
  • A. Darvesh, et al., “Rheology of variable viscosity-based mixed convective inclined magnetized cross nanofluid with varying thermal conductivity,” Appl. Sci., vol. 12, no. 18, pp. 9041, Jan 2022. DOI: 10.3390/app12189041.
  • A. Ayub, et al., “Activation energy and inclination magnetic dipole influences on carreau nanofluid flowing via cylindrical channel with an infinite shearing rate,” Appl. Sci., vol. 12, no. 17, pp. 8779, Jan 2022. DOI: 10.3390/app12178779.
  • S. Ahmad, et al., “Localized magnetic fields and their effects on heat transfer enhancement and vortices generation in tri-hybrid nanofluids: a novel investigation,” Case Stud. Therm. Eng., vol. 50, pp. 103408, Oct 2023. DOI: 10.1016/j.csite.2023.103408.
  • J. K. Singh, Hanumantha, S. Kolasani and S. M. Hussain, “Exploration of heat and mass transport in oscillatory hydromagnetic nanofluid flow within two verticals alternatively conducting surfaces,” ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech., vol. 103, no. 12, pp. e202300216, 2023. DOI: 10.1002/zamm.202300216.
  • A. S. Dogonchi, A. J. Chamkha, S. M. Seyyedi, M. Hashemi-Tilehnoee and D. D. Ganji, “Viscous dissipation impact on free convection flow of Cu-water nanofluid in a circular enclosure with porosity considering internal heat source,” J. Appl. Comput. Mech., vol. 5, no. 4, pp. 717–726, Jun 2019. DOI: 10.22055/jacm.2019.27465.1402.
  • M. Hatami, D. Song and D. Jing, “Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition,” Int. J. Heat Mass Transf., vol. 98, pp. 758–767, Jul 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.063.
  • T. Tayebi, A. J. Chamkha and M. Djezzar, “Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall,” Sci. Iran., vol. 26, no. 5, pp. 2770–2783, Oct. 2019. DOI: 10.24200/sci.2018.21069.
  • M. Nagapavani, G. V. Ramana Reddy, A. Abdulrahman, R. Kumar and R. J. Punith Gowda, “Three-dimensional swirling flow of a ternary composite nanofluid induced by the torsional motion of a cylinder considering non-Fourier law,” Numer. Heat Transf. Part A: Appl., vol. 85, no. 13, pp. 2183–2196, Jul 2024. DOI: 10.1080/10407782.2023.2219834.
  • T. K. Kumar, et al., “The magnetic dipole-induced ternary-hybrid nanofluid flow behavior along a vertical and horizontal wall under free, mixed, and forced convection,” Numer. Heat Transf. Part A: Appl., pp. 1–18, 2024. DOI: 10.1080/10407782.2023.2296129.
  • A. S. Dogonchi, M. Waqas, S. M. Seyyedi, M. Hashemi-Tilehnoee and D. D. Ganji, “A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity,” Int. Commun. Heat Mass Transf., vol. 111, pp. 104430, Feb 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104430.
  • K. Chandan, et al., “Predicting the thermal distribution in a convective wavy fin using a novel training physics-informed neural network method,” Sci. Rep., vol. 14, no. 1, pp. 7045, Mar 2024. DOI: 10.1038/s41598-024-57772-x.
  • C. Kumar, et al., “A physics-informed machine learning prediction for thermal analysis in a convective-radiative concave fin with periodic boundary conditions,” ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech., pp. e202300712, DOI: 10.1002/zamm.202300712.
  • J. Madhu, K. Karthik, R. S. Varun Kumar, R. J. Punith Gowda, R. Naveen Kumar and B. C. Prasannakumara, “Dynamics of pollutant dispersion and solid–fluid interfacial layer in Jeffrey nanofluid flow subjected to waste discharge concentration: implementation of probabilists’ Hermite polynomial collocation method,” Numer. Heat Transf. Part A: Appl., pp. 1–19, Feb 2024. DOI: 10.1080/10407782.2024.2319349.
  • K. S. Albalawi, et al., “Impact of waste discharge concentration on fluid flow in inner stretched and outer stationary co-axial cylinders,” Appl. Therm. Eng., vol. 244, pp. 122757, May 2024. DOI: 10.1016/j.applthermaleng.2024.122757.
  • K. S. Albalawi, et al., “Nanoparticle aggregation kinematics and nanofluid flow in convectively heated outer stationary and inner stretched coaxial cylinders: influenced by linear, nonlinear, and quadratic thermal radiation,” Mod. Phys. Lett. B, pp. 2450361, May 2024. DOI: 10.1142/S0217984924503615.
  • T. Tayebi and A. J. Chamkha, “Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids,” Numer. Heat Transf. Part Appl., vol. 71, no. 11, pp. 1159–1173, Jun2017. DOI: 10.1080/10407782.2017.1337990.
  • A. I. Alsabery, K. Naganthran, F. M. Azizul, I. Hashim and R. Nazar, “Numerical study of conjugate natural convection heat transfer of a blood filled horizontal concentric annulus,” Int. Commun. Heat Mass Transf., vol. 114, pp. 104568, May 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104568.
  • A. Bouzerzour, M. Djezzar, H. F. Oztop, T. Tayebi and N. Abu-Hamdeh, “Natural convection in nanofluid filled and partially heated annulus: effect of different arrangements of heaters,” Phys. Stat. Mech. Appl., vol. 538, pp. 122479, Jan2020. DOI: 10.1016/j.physa.2019.122479.
  • A. Bouzerzour, T. Tayebi, A. J. Chamkha and M. Djezzar, “Numerical investigation of natural convection nanofluid flow in an annular space between confocal elliptic cylinders at various geometrical orientations,” Comput. Therm. Sci. Int. J., vol. 12, no. 2, pp. 99-114, 2020. DOI: 10.1615/ComputThermalScien.2020026938.
  • T. Tayebi and H. F. Öztop, “Entropy production during natural convection of hybrid nanofluid in an annular passage between horizontal confocal elliptic cylinders,” Int. J. Mech. Sci., vol. 171, pp. 105378, Apr 2020. DOI: 10.1016/j.ijmecsci.2019.105378.
  • K. Saad Albalawi, M. Bin-Asfour, B. Saad T. Alkahtani, J. Madhu, R. J. Punith Gowda and R. N. Kumar, “Mathematical modeling of carboxymethyl cellulose water-based hybrid nanofluid flow between rotating disk and stationary cone,” Numer. Heat Transf. Part A Appl., pp. 1–16, 2024. DOI: 10.1080/10407782.2024.2328761.
  • S. Shukla, R. P. Sharma, R. J. Punith Gowda and B. C. Prasannakumara, “Elastic deformation effect on carboxymethyl cellulose water-based (TiO2–Ti6Al4V) hybrid nanoliquid over a stretching sheet with an induced magnetic field,” Numer. Heat Transf. Part A: Appl., vol. 84, no. 11, pp. 1401–1415, Dec 2023. DOI: 10.1080/10407782.2023.2175750.
  • J. K. Singh and S. Kolasani, “Energy dissipation and Hall effect on MHD convective flow of nanofluid within an asymmetric channel with arbitrary wall thickness and conductance,” Eur. Phys. J. Plus, vol. 136, no. 10, pp. 1074, Oct 2021. DOI: 10.1140/epjp/s13360-021-02022-6.
  • J. J. K. Singh, S. G. Begum and G. S. Seth, “Influence of Hall current and wall conductivity on hydromagnetic mixed convective flow in a rotating Darcian channel,” Phys. Fluids, vol. 30, no. 11, pp. 113602, Nov 2018. DOI: 10.1063/1.5054654.
  • M. Izadi, B. Bastani and M. A. Sheremet, “Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach,” Adv. Powder Technol., vol. 31, no. 6, pp. 2493–2504, Jun 2020. DOI: 10.1016/j.apt.2020.04.011.
  • B. Rezaeianjouybari, M. Sheikholeslami, A. Shafee and H. Babazadeh, “A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study,” Chem. Eng. Sci., vol. 215, pp. 115465, Apr 2020. DOI: 10.1016/j.ces.2019.115465.
  • N. Deb and S. Saha, “Role of internal heat generation, magnetism and Joule heating on entropy generation and mixed convective flow in a square domain,” Ann. Nucl. Energy, vol. 198, pp. 110324, Apr2024. DOI: 10.1016/j.anucene.2023.110324.
  • J. K. Singh, G. S. Seth and S. M. Hussain, “Thermal performance of hydromagnetic nanofluid flow within an asymmetric channel with arbitrarily conductive walls filled with Darcy-Brinkman porous medium,” J. Magn. Magn. Mater., vol. 582, pp. 171034, Sep 2023. DOI: 10.1016/j.jmmm.2023.171034.
  • S. N. Rai, D. V. Ramana and A. Manglik, Dynamics of Earth’s Fluid System. Tokyo: CRC Press, 2002.
  • P. V. Ananth Subray, B. N. Hanumagowda, S. V. K. Varma, A. S. Alqahtani and M. Y. Malik, “Regression analysis of magnetized fluid flow in a discretely heated square enclosure in the partially filled with porous medium using RSM-CCD,” J. Therm. Anal. Calorim., Apr 2024. DOI: 10.1007/s10973-024-13058-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.