0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of an inclined thick partition on free convection heat transfer performance under surface radiation in a hollow block

, , , ORCID Icon &
Received 24 Mar 2024, Accepted 06 Jul 2024, Published online: 16 Jul 2024

References

  • J. R. Lee and M. Y. Ha, “A numerical study of natural convection in a horizontal enclosure with a conducting body,” Int. J. Heat Mass Transf., vol. 48, no. 16, pp. 3308–3318, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.02.026.
  • E. H. Ridouane, M. Hasnaoui, A. Amahmid and A. Raji, “Interaction between natural convection and radiation in a square cavity heated from below,” Numer. Heat Transf. A, vol. 45, no. 3, pp. 289–311, 2004. DOI: 10.1080/10407780490250373.
  • A. K. Sharma, K. Velusamy and C. Balaji, “Interaction of turbulent natural convection and surface thermal radiation in inclined square enclosures,” Heat Mass Transf., vol. 44, no. 10, pp. 1153–1170, 2008. DOI: 10.1007/s00231-007-0353-5.
  • S.-Y. Wu, F.-H. Guo and L. Xiao, “Numerical investigation on combined natural convection and radiation heat losses in one side open cylindrical cavity with constant heat flux,” Int. J. Heat Mass Transf., vol. 71, pp. 573–584, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.064.
  • K. M. Gangawane, H. F. Oztop and M. E. Ali, “Mixed convection in a lid-driven cavity containing triangular block with constant heat flux: effect of location of block,” Int. J. Mech. Sci., vol. 152, pp. 492–511, 2019. DOI: 10.1016/j.ijmecsci.2019.01.020.
  • Y. Hu, D. Li, S. Shu and X. Niu, “Study of multiple steady solutions for the 2D natural convection in a concentric horizontal annulus with a constant heat flux wall using immersed boundary-lattice Boltzmann method,” Int. J. Heat Mass Transf., vol. 81, pp. 591–601, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.050.
  • S. G. Martyushev, I. V. Miroshnichenko and M. A. Sheremet, “Numerical analysis of spatial unsteady regimes of conjugate convective-radiative heat transfer in a closed volume with an energy source,” J. Eng. Phys. Thermophy., vol. 87, no. 1, pp. 124–134, 2014. DOI: 10.1007/s10891-014-0992-6.
  • I. V. Miroshnichenko and M. A. Sheremet, “Radiation effect on conjugate turbulent natural convection in a cavity with a discrete heater,” Appl. Math. Comput., vol. 321, pp. 358–371, 2018. DOI: 10.1016/j.amc.2017.11.010.
  • I. V. Miroshnichenko and M. A. Sheremet, “Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: a review,” Renew. Sustain. Energy Rev., vol. 82, pp. 40–59, 2018. DOI: 10.1016/j.rser.2017.09.005.
  • B. Jamal, M. Boukendil, L. El Moutaouakil, A. Abdelbaki and Z. Zrikem, “Thermal analysis of hollow clay bricks submitted to a sinusoidal heating,” Mater. Today Proc., vol. 45, pp. 7399–7403, 2021. DOI: 10.1016/j.matpr.2021.01.528.
  • M. Boukendil, A. Abdelbaki and Z. Zrikem, “Detailed numerical simulation of coupled heat transfer by conduction, natural convection and radiation through double honeycomb walls,” Build. Simul, vol. 5, no. 4, pp. 337–344, 2012. DOI: 10.1007/s12273-012-0064-9.
  • M. Boukendil, A. Abdelbaki and Z. Zrikem, “Numerical simulation of coupled heat transfer through double hollow brick walls: effects of mortar joint thickness and emissivity,” Appl. Thermal Eng., vol. 125, pp. 1228–1238, 2017. DOI: 10.1016/j.applthermaleng.2017.07.094.
  • S. C. Saha and Y. T. Gu, “Transient air flow and heat transfer in a triangular enclosure with a conducting partition,” Appl. Math. Modell., vol. 38, no. 15-16, pp. 3879–3887, 2014. DOI: 10.1016/j.apm.2013.10.006.
  • W. Wu and C. Y. Ching, “Laminar natural convection in an air-filled square cavity with partitions on the top wall,” Int. J. Heat Mass Transf., vol. 53, no. 9-10, pp. 1759–1772, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.014.
  • V. A. F. Costa, “Natural convection in partially divided square enclosures: effects of thermal boundary conditions and thermal conductivity of the partitions,” Int. J. Heat Mass Transf., vol. 55, no. 25-26, pp. 7812–7822, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.08.004.
  • M. M. Alhazmy, “Internal baffles to reduce the natural convection in the voids of hollow blocks,” Build. Simul., vol. 3, no. 2, pp. 125–137, 2010. DOI: 10.1007/s12273-010-0003-6.
  • M. M. Alhazmy, “Numerical investigation on using inclined partitions to reduce natural convection inside the cavities of hollow bricks,” Int. J. Thermal Sci., vol. 49, no. 11, pp. 2201–2210, 2010. DOI: 10.1016/j.ijthermalsci.2010.06.009.
  • Y. Varol, H. F. Oztop and I. Pop, “Natural convection in a diagonally divided square cavity filled with a porous medium,” Int. J. Thermal Sci., vol. 48, no. 7, pp. 1405–1415, 2009. DOI: 10.1016/j.ijthermalsci.2008.12.015.
  • S. S. Priam, M. M. Ikram, S. Saha and S. C. Saha, “Conjugate natural convection in a vertically divided square enclosure by a corrugated solid partition into air and water regions,” Thermal Sci. Eng. Prog., vol. 25, pp. 101036, 2021. DOI: 10.1016/j.tsep.2021.101036.
  • M. Khatamifar, W. Lina, S. W. Armfieldc, D. Holmes A and M. P. Kirkpatrick, “Conjugate natural convection heat transfer in a partitioned differentially-heated square cavity,” Int. Commun. Heat Mass Transf., vol. 81, pp. 92–103, 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.003.
  • M. Ferhi, R. Djebali, S. Abboudi and H. Kharroubi, “Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a conducting solid using the Lattice Boltzmann method,” J. Therm. Anal. Calorim., vol. 138, no. 5, pp. 3065–3088, 2019. DOI: 10.1007/s10973-019-08276-8.
  • A. Mukherjee, V. Chandrakar and J. R. Senapati, “Flow and conjugate heat transfer with surface radiation characteristics of a real-scale infrared suppression device with conical funnels,” Int. Commun. Heat Mass Transf., vol. 123, pp. 105208, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105208.
  • J. R. Howell, “The effect of bifurcation on numerical calculation of conjugate heat transfer with radiation,” J. Quant. Spectrosc. Radiat. Transf., vol. 196, pp. 242–245, 2017. DOI: 10.1016/j.jqsrt.2017.04.018.
  • F. Garoosi and F. Talebi, “Numerical simulation of conjugate conduction and natural convection heat transfer of nanofluid inside a square enclosure containing a conductive partition and several disconnected conducting solid blocks using the Buongiorno’s two phase model,” Powder Technol., vol. 317, pp. 48–71, 2017. DOI: 10.1016/j.powtec.2017.04.042.
  • F. Selimefendigil and H. F. Öztop, “Analysis of MHD mixed convection in a flexible walled and nanofluids filled lid-driven cavity with volumetric heat generation,” Int. J. Mech. Sci, vol. 118, pp. 113–124, 2016. DOI: 10.1016/j.ijmecsci.2016.09.011.
  • T. Tayebi, A. Chamkha, A. A. Melaibari and E. Raouache, “Effect of internal heat generation or absorption on conjugate thermal-free convection of a suspension of hybrid nanofluid in a partitioned circular annulus,” Int. Commun. Heat Mass Transf., vol. 126, no. 021, pp. 105397, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105397.
  • G. Lauriat and G. Desrayaud, “Effect of surface radiation on conjugate natural convection in partially open enclosures,” Int. J. Thermal Sci., vol. 45, no. 4, pp. 335–346, 2006. DOI: 10.1016/j.ijthermalsci.2005.07.002.
  • A. Shaija and G. S. V. L. Narasimham, “Effect of surface radiation on conjugate natural convection in a horizontal annulus driven by inner heat generating solid cylinder,” Int. J. Heat Mass Transf., vol. 52, no. 25-26, pp. 5759–5769, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.05.033.
  • C. Cintolesi, H. Nilsson, A. Petronio and V. Armenio, “Numerical simulation of conjugate heat transfer and surface radiative heat transfer using the P1 thermal radiation model: parametric study in benchmark cases,” Int. J. Heat Mass Transf., vol. 107, pp. 956–971, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.006.
  • B. Jamal, L. El Moutaouakil, B. Mohammed, A. Abdelhalim and Z. Zaki, “Numerical modeling of conjugate heat transfer through concrete hollow bricks,” Heat Trans., vol. 52, no. 5, pp. 3758–3773, 2023. DOI: 10.1002/htj.22850.
  • I. V. Miroshnichenko and M. A. Sheremet, “Influence of Thermal Radiation on Heat Transfer through a Hollow Block,” J. Appl. Comput. Mech., vol. 9, pp. 419–429, 2023.
  • Z. K. Radhi, S. J. Yaseen, A. A. Alsahlani and R. Al-Sabur, “Exploring magneto-hydrodynamic influence on mixed convection within a vented enclosure containing a heat-conductive square column,” IJMERR, vol. 13, pp. 75–84, 2024. DOI: 10.18178/ijmerr.13.1.75-84.
  • V. D. Rao, S. V. Naidu, B. G. Rao and K. V. Sharma, “Heat transfer from a horizontal fin array by natural convection and radiation—A conjugate analysis,” Int. J. Heat Mass Transf., vol. 49, no. 19-20, pp. 3379–3391, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.03.010.
  • H. A. Prince, E. H. Rozin, M. J. H. Sagor and S. Saha, “Evaluation of overall thermal performance for conjugate natural convection in a trapezoidal cavity with different surface corrugations,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105772, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105772.
  • Y. Jaluria, Natural Convection: Heat and Mass Transfer. UK: Pergamon Press, 1980.
  • F. P. Incropera, D. P. DeWitt, T. L. Bergham and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. New York: John Wiley&Sons, 2007.
  • A. A. Samarskii, Theory of Difference Schemes. Moscow: Nauka, 1977.
  • R. Ben Yedder and E. Bilgen, “Turbulent natural convection and conduction in enclosures bounded by a massive wall,” Int. J. Heat Mass Transf., vol. 38, no. 10, pp. 1879–1891, 1995. DOI: 10.1016/0017-9310(94)00298-A.
  • G. Yesiloz and O. Aydin, “Laminar natural convection in right-angled triangular enclosures heated and cooled on adjacent walls,” Int. J. Heat Mass Transf., vol. 60, pp. 365–374, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.