0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the flow-heat-vortex mechanism in hot, coolant and delivery channels in film cooling under strongly-coupled boundary conditions using direct numerical simulation

, , &
Received 26 Mar 2024, Accepted 19 Jul 2024, Published online: 29 Jul 2024

References

  • K. Wieghardt, S. A. F. A., United, Hot-air Discharge for De-icing. Wright Field: Air Materiel Command, 1946, p. 44.
  • J. Wang, P. Cui, B. Sundén and R. Yang, “Effects of deposition locations on film cooling with and without a mist injection,” Numer. Heat Trans. Part A: Appl., vol. 70, no. 10, pp. 1072–1086, 2016. DOI: 10.1080/10407782.2016.1230395.
  • G. J. VanFossen, “Heat-transfer coefficients for staggered arrays of short pin fins,” J Eng Gas Turbines Power, vol. 104, no. 2, pp. 268–274, 1982. DOI: 10.1115/1.3227275.
  • E. Achenbach, “The effect of surface roughness on the heat transfer from a circular cylinder to the cross flow of air,” Int. J. Heat Mass Trans., vol. 20, no. 4, pp. 359–369, 1977. DOI: 10.1016/0017-9310(77)90157-0.
  • S. S. Pai and J. A. Weibel, “Neural net-based surrogate square pin fin correlations for thermal-fluid design optimization under developing flow conditions,” Numer. Heat Trans. Part B: Fundam., pp. 1–18, 2023. DOI: 10.1080/10407790.2023.2267173.
  • R. J. Goldstein, E. R. G. Eckert and F. Burggraf, “Effects of hole geometry and density on three-dimensional film cooling,” Int. J. Heat Mass Trans., vol. 17, no. 5, pp. 595–607, 1974. DOI: 10.1016/0017-9310(74)90007-6.
  • J. Andreopoulos and W. Rodi, “Experimental investigation of jets in a crossflow,” J. Fluid Mech., vol. 138, pp. 93–127, 1984. DOI: 10.1017/S0022112084000057.
  • K. Huang, J. Zhang, X. Tan and Y. Shan, “Experimental study on film cooling performance of imperfect holes,” Chin. J Aeronaut., vol. 31, no. 6, pp. 1215–1221, 2018. DOI: 10.1016/j.cja.2018.04.001.
  • B. Johnson, W. Tian, K. Zhang and H. Hu, “An experimental study of density ratio effects on the film cooling injection from discrete holes by using PIV and PSP techniques,” Int. J. Heat Mass Trans. vol. 76, pp. 337–349, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.028.
  • H. Nasir, S. Acharya and S. Ekkad, “Improved film cooling from cylindrical angled holes with triangular tabs: effect of tab orientations,” Int. J. Heat Fluid Fl., vol. 24, no. 5, pp. 657–668, 2003. DOI: 10.1016/S0142-727X(03)00082-1.
  • D. K. Walters and J. H. Leylek, “A detailed analysis of film-cooling physics: part I—streamwise injection with cylindrical holes,” J. Turbomach., vol. 122, no. 1, pp. 102–112, 2000. DOI: 10.1115/1.555433.
  • S. Inanli, I. Gorgulu, T. Okutucu and O. Uzol, “Flat plate film cooling performance predictions by RANS turbulence models, Thmt-12,” Proceedings of the Seventh International Symposium On Turbulence Heat and Mass Transfer, 2012, pp. 1262–1271.
  • J. Ling, R. Rossi and J. K. Eaton, “Near wall modeling for trailing edge slot film cooling,” J. Fluids Eng., vol. 137, no. 2, pp. 21103, 2015. DOI: 10.1115/1.4028498.
  • M. G. Ghorab, “Adiabatic and conjugate cooling effectiveness analysis of a new hybrid scheme,” Int. J. Therm. Sci., vol. 50, no. 6, pp. 965–983, 2011. DOI: 10.1016/j.ijthermalsci.2011.01.012.
  • Z. Ke and J. Wang, “Conjugate heat transfer simulations of pulsed film cooling on an entire turbine vane,” Appl. Therm. Eng., vol. 109, pp. 600–609, 2016. DOI: 10.1016/j.applthermaleng.2016.08.132.
  • J. Kim and K. Kim, “Film-cooling performance of converged-inlet hole shapes,” Int. J. Therm. Sci., vol. 124, pp. 196–211, 2018. DOI: 10.1016/j.ijthermalsci.2017.10.014.
  • W. Li, X. Li, J. Ren and H. Jiang, “Large eddy simulation of compound angle hole film cooling with hole length-to-diameter ratio and internal crossflow orientation effects,” Int. J. Therm. Sci., vol. 121, pp. 410–423, 2017. DOI: 10.1016/j.ijthermalsci.2017.08.001.
  • S. I. Baek and J. Ahn, “Large eddy simulation of film cooling with bulk flow pulsation: comparative study of LES and RANS,” Appl. Sci., vol. 10, no. 23, pp. 8553, 2020. DOI: 10.3390/app10238553.
  • Z. Chen, J. Zhan, C. Li, W. Hu and Y. Gong, “The effect of vortex shedding in film-cooling processes,” Heat Trans. Eng., vol. 42, no. 17, pp. 1432–1451, 2021. DOI: 10.1080/01457632.2020.1800260.
  • W. Fu, W. Chao, M. Tsubokura, C. Li and W. Wang, “Direct numerical simulation of film cooling with a fan-shaped hole under low Reynolds number conditions,” Int. J. Heat Mass Trans., vol. 123, pp. 544–560, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.011.
  • T. Yu, D. Wang, H. Li and H. Xu, “Direct numerical simulation capability for strongly-coupled fluid-solid heat transfer in film-cooling structures,” Int. J. Heat Mass Trans., vol. 138, pp. 750–761, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.061.
  • H. V. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen,” Journal für die reine und angewandte Mathematik., vol. 1858, no. 55, pp. 25–55, 1858. DOI: 10.1515/crll.1858.55.25.
  • S. K. Robinson, “Coherent motions in the turbulent boundary layer,” Annu. Rev. Fluid Mech., vol. 23, no. 1, pp. 601–639, 1991. DOI: 10.1146/annurev.fl.23.010191.003125.
  • J. C. Hunt, A. A. Wray and P. Moin, “Eddies, streams, and convergence zones in turbulent flows, Studying Turbulence Using Numerical Simulation Databases, 2,” Proceedings of the 1988 Summer Program, 1988.
  • J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid. Mech., vol. 285, pp. 69–94, 1995. DOI: 10.1017/S0022112095000462.
  • M. S. Chong, A. E. Perry and B. J. Cantwell, “A general classification of three‐dimensional flow fields,” Phys. Fluids a: Fluid Dynam., vol. 2, no. 5, pp. 765–777, 1990. DOI: 10.1063/1.857730.
  • J. Zhou, R. J. Adrian, S. Balachandar and T. M. Kendall, “Mechanisms for generating coherent packets of hairpin vortices in channel flow,” J. Fluid Mech., vol. 387, pp. 353–396, 1999. DOI: 10.1017/S002211209900467X.
  • C. Liu, et al., “Third generation of vortex identification methods: omega and Liutex/Rortex based systems,” J. Hydrodyn., vol. 31, no. 2, pp. 205–223, 2019. DOI: 10.1007/s42241-019-0022-4.
  • X. Dong, Y. Gao and C. Liu, “New normalized Rortex/vortex identification method,” Phys. Fluids, vol. 31, no. 1, pp. 011701, 2019, DOI: 10.1063/1.5066016.
  • H. Xu, X. Cai and C. Liu, “Liutex (vortex) core definition and automatic identification for turbulence vortex structures,” J Hydrodyn, vol. 31, no. 5, pp. 857–863, 2019. DOI: 10.1007/s42241-019-0066-5.
  • W. Yang, X. Shi and J. Zhang, “Experimental investigation on film cooling characteristics of ellipse-shaped tab,” Exp. Therm. Fluid Sci., vol. 81, pp. 277–290, 2017. DOI: 10.1016/j.expthermflusci.2016.10.018.
  • F. Muldoon and S. Acharya, “DNS study of pulsed film cooling for enhanced cooling effectiveness,” Int. J. Heat Mass Trans., vol. 52, no. 13-14, pp. 3118–3127, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.01.030.
  • R. Mittal and G. Iaccarino, “Immersed boundary methods,” Annu. Rev. Fluid Mech., vol. 37, no. 1, pp. 239–261, 2005. DOI: 10.1146/annurev.fluid.37.061903.175743.
  • H. Xu, W. Yuan and M. Khalid, “Design of a high-performance unsteady Naiver–Stokes solver using a flexible-cycle additive-correction multigrid technique,” J. Comput. Phys., vol. 209, no. 2, pp. 504–540, 2005. DOI: 10.1016/j.jcp.2005.03.029.
  • P. Moin and K. Mahesh, “Direct numerical simulation: a tool in turbulence research,” Annu Rev Fluid Mech., vol. 30, no. 1, pp. 539–578, 1998. DOI: 10.1146/annurev.fluid.30.1.539.
  • R. Courant, K. Friedrichs and H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann., vol. 100, no. 1, pp. 32–74, 1928. DOI: 10.1007/BF01448839.
  • F. Bashforth and J. C. Adams, An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid. Cambridge University Press, Cambridge, UK, 1883.
  • J. Kim and P. Moin, “Application of a fractional-step method to incompressible Navier-Stokes equations,” J. Comput. Phys., vol. 59, no. 2, pp. 308–323, 1985. DOI: 10.1016/0021-9991(85)90148-2.
  • J. Wang, C. Gu and B. A. Sunden, “Conjugated heat transfer analysis of a film cooling passage with different rib configurations,” Int. J. Numer. Method H, vol. 25, no. 4, pp. 841–860, 2015. DOI: 10.1108/HFF-04-2014-0110.
  • C. Liu, Y. Gao, S. Tian and X. Dong, “Rortex-A new vortex vector definition and vorticity tensor and vector decompositions,” Phys. Fluids, vol. 30, no. 3, pp. 035103, 2018. DOI: 10.1063/1.5023001.
  • Y. Gao and C. Liu, “Rortex and comparison with eigenvalue-based vortex identification criteria,” Phys. Fluids, vol. 30, no. 8, pp. 085107, 2018. DOI: 10.1063/1.5040112.
  • S. Na and T. I. Shih, “Increasing adiabatic film-cooling effectiveness by using an upstream ramp,” ASME J. Heat Mass Trans., vol. 129, no. 4, pp. 464–471, 2007. DOI: 10.1115/1.2709965.
  • R. Zhu, T. W. Simon and G. Xie, “Influence on film cooling effectiveness of novel holes based on cylindrical configurations,” Numer. Heat Trans., Part A: Appl., vol. 75, no. 7, pp. 469–488, 2019. DOI: 10.1080/10407782.2019.1606629.
  • S. Acharya and D. Houston Leedom, “Large eddy simulations of discrete hole film cooling with plenum inflow orientation effects,” J. Heat Trans., vol. 135, no. 1, pp. 11010, 2013. DOI: 10.1115/1.4007667.
  • S. Dai, et al., “Film-cooling of cylindrical hole with downstream surface dielectric barrier discharge actuators,” Int. J. Heat Mass Trans., vol. 90, pp. 825–837, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.007.
  • S. Yamawaki, et al., Anti-kidney pair of vortices in shaped holes and their influence on film cooling effectiveness, Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, Citeseer,1997. p. 1.
  • Z. Wang, J. Liu and C. Zhang, “Impacts of geometric parameters of double-jet film cooling on anti-kidney vortex structure and cooling effectiveness”, Turbo Expo: power for Land, Sea, and Air. American Society of Mechanical Engineers, 2013. 55157 V03BT13A002. DOI: 10.1115/GT2013-94038.
  • H. Li, D. Wang and H. Xu, “Improved law-of-the-wall model for turbulent boundary layer in engineering,” AIAA J., vol. 58, no. 8, pp. 3308–3319, 2020. DOI: 10.2514/1.J058464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.