Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 3
378
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

A Cartesian grid solver for simulation of a phase-change material (PCM) solar thermal storage device

&
Pages 179-196 | Received 27 May 2015, Accepted 27 Jul 2015, Published online: 21 Jan 2016

References

  • F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems, Renew. Sustain. Energy Rev., vol. 14, pp. 615–628, 2010.
  • N. S. Dhaidan and J. M. Khodadadi, Melting and Convection of Phase Change Materials in Different Shape Containers: A Review, Renew. Sustain. Energy Rev., vol. 43, pp. 449–477, 2015.
  • A. Mawire, M. McPherson, and R. R. J. van den Heetkamp, Discharging Simulations of a Thermal Energy Storage (TES) System for an Indirect Solar Cooker, Solar Energy Mater. Solar Cells, vol. 94, pp. 1100–1106, 2010.
  • A. Sharma, C. R. Chen, V. V. S. Murty, and A. Shukla, Solar Cooker with Latent Heat Storage Systems: A Review, Renew. Sustain. Energy Rev., vol. 13, pp. 1599–1605, 2009.
  • S. D. Sharma, D. Buddhi, R. L. Sawhney, and A. Sharma, Design, Development and Performance Evaluation of a Latent Heat Storage Unit for Evening Cooking in a Solar Cooker, Energy Conversion Manage., vol. 41, pp. 1497–1508, 2000.
  • F. Yettou, B. Azoui, A. Malek, A. Gama, and N. L. Panwar, Solar Cooker Realizations in Actual Use: An Overview, Renew. Sustain. Energy Rev., vol. 37, pp. 288–306, 2014.
  • T. Bauer and N. Breidenbach, Overview of Molten Salt Storage Systems and Material Development for Solar Thermal Power Plants, World Renew. Energy Forum, 2012.
  • B. Zivkovic and I. Fujii, An Analysis of Isothermal Phase Change within Rectangular and Cylindrical Containers, Solar Energy, vol. 70, pp. 51–61, 2001.
  • K. Nithyanandam and R. Pitchumani, Optimization of an Encapsulated Phase Change Material Thermal Energy Storage System, Solar Energy, vol. 107, pp. 770–788, 2014.
  • P. Charvát, L. Klimeš, and M. Ostrý, Numerical and Experimental Investigation of a PCM-Based Thermal Storage Unit for Solar Air Systems, Energy Buildings, vol. 68, pp. 488–497, 2014.
  • S. Jegadheeswaran and S. D. Pohekar, Performance Enhancement in Latent Heat Thermal Storage System: A Review, Renew. Sustain. Energy Rev., vol. 13, pp. 2225–2244, 2009.
  • C. Alkan, A. Sarı, A. Karaipekli, and O. Uzun, Preparation, Characterization, and Thermal Properties of Microencapsulated Phase Change Material for Thermal Energy Storage, Solar Energy Mater. Solar Cells, vol. 93, pp. 143–147, 2009.
  • A. Sarı and A. Karaipekli, Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material, Appl. Thermal Eng., vol. 27, pp. 1271–1277, 2007.
  • O. Mesalhy, K. Lafdi, A. Elgafy, and K. Bowman, Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix, Energy Conversion Manage., vol. 46, pp. 847–867, 2005.
  • B. Chen et al., An Experimental Study of Convective Heat Transfer with Microencapsulated Phase Change Material Suspension: Laminar Flow in a Circular Tube under Constant Heat Flux, Exp. Thermal Fluid Sci., vol. 32, pp. 1638–1646, 2008.
  • Y. Dutil, D. R. Rousse, N. B. Salah, S. Lassue, and L. Zalewski, A Review on Phase-Change Materials: Mathematical Modeling and Simulations, Renew. Sustain. Energy Rev., vol. 15, pp. 112–130, 2011.
  • M. Gharebaghi and I. Sezai, Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins, Numer. Heat Transfer, A, vol. 53, pp. 749–765, 2007.
  • V. Shatikian, G. Ziskind, and R. Letan, Numerical Investigation of a PCM-Based Heat Sink with Internal Fins: Constant Heat Flux, Int. J. Heat Mass Transfer, vol. 51, pp. 1488–1493, 2008.
  • S. Tiari, S. Qiu, and M. Mahdavi, Numerical Study of Finned Heat Pipe-Assisted Thermal Energy Storage System with High Temperature Phase Change Material, Energy Conversion Manage., vol. 89, pp. 833–842, 2015.
  • J. Y. Long, Simulation Investigation for Heat Transfer in Fin-Tube Thermal Storage Unit with Phase Change Material, Adv. Mater. Res., vol. 168–170, pp. 895–899, 2010.
  • H. Shokouhmand and B. Kamkari, Numerical Simulation of Phase Change Thermal Storage in Finned Double-Pipe Heat Exchanger, Appl. Mech. Mater., vol. 232, pp. 742–746, 2012.
  • D. Groulx and W. Ogoh, Solid-Liquid Phase Change Simulation Applied to a Cylindrical Latent Heat Energy Storage System, Proceedings of the COMSOL Conference, 2009.
  • A. Harmim, M. Merzouk, M. Boukar, and M. Amar, Solar Cooking Development in Algerian Sahara: Towards a Socially Suitable Solar Cooker, Renew. Sustain. Energy Rev., vol. 37, pp. 207–214, 2014.
  • P. P. Otte, Warming up to Solar Cooking—a Comparative Study on Motivations and the Adoption of Institutional Solar Cookers in Developing Countries, Energy Procedia, vol. 57, pp. 1632–1641, 2014.
  • H. Niu, Y. He, U. Desideri, P. Zhang, H. Qin, and S. Wang, Rural Household Energy Consumption and Its Implications for Eco-Environments in Nw China: A Case Study, Renew. Energy, vol. 65, pp. 137–145, 2014.
  • V. Shatikian, G. Ziskind, and R. Letan, Numerical Investigation of a PCM-Based Heat Sink with Internal Fins, Int. J. Heat Mass Transfer, vol. 48, pp. 3689–3706, 2005.
  • R. Akhilesh, A. Narasimhan, and C. Balaji, Method to Improve Geometry for Heat Transfer Enhancement in PCM Composite Heat Sinks, Int. J Heat Mass Transfer, vol. 48, pp. 2759–2770, 2005.
  • S. Liu, Y. Li, and Y. Zhang, Mathematical Solutions and Numerical Models Employed for the Investigations of PCMs’ Phase Transformations, Renew. Sustain. Energy Rev., vol. 33, pp. 659–674, 2014.
  • S. K. Sambasivan, S. Krishnan, A. Kapahi, and H. S. Udaykumar, Tree-Based Local Mesh Refinement for Compressible Multiphase Flows, 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 5, 2009–January 8, 2009, Orlando, FL, USA, 2009.
  • S. Marella, S. Krishnan, H. Liu, and H. S. Udaykumar, Sharp Interface Cartesian Grid Method I: An Easily Implemented Technique for 3D Moving Boundary Computations, J. Comput. Phys., vol. 210, pp. 1–31, 2005.
  • H. S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna, A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries, J. Comput. Phys., vol. 174, pp. 345–380, 2001.
  • V. R. Voller, An Overview of Numerical Methods for Solving Phase Change Problems, in Advances in Numerical Heat Transfer. vol. 1, Taylor & Francis, Washington, DC, 1996.
  • K. Wittig and P. A. Nikrityuk, Three-Dimensionality of Fluid Flow in the Benchmark Experiment for a Pure Metal Melting on a Vertical Wall, IOP Conf. Ser.: Mater. Sci. Eng., vol. 27, 012054, 2012.
  • S. Kashani, A. A. Ranjbar, M. M. Madani, M. Mastiani, and H. Jalaly, Numerical Study of Solidification of a Nano-Enhanced Phase Change Material (NEPCM) in a Thermal Storage System, J. Appl. Mech. Tech. Phys., vol. 54, pp. 702–712, 2013.
  • Y. Kim, A. Hossain, and Y. Nakamura, Numerical Study of Melting of a Phase Change Material (PCM) Enhanced by Deformation of a Liquid-Gase Interface, Int. J. Heat Mass Transfer, vol. 63, pp. 101–112, 2013.
  • H. Mirzaei, A. Dadvand, M. Mastiani, S. Sebti, and S. Kashani, Melting of a Phase Change Material in a Horizontal Annulus with Discrete Heat Sources, Thermal Sci., vol. 19, pp. 1733–1745, 2013.
  • G. Petrone and G. Cammarata, Numerical Simulation of Phase Change Materials Melting Process, Comput. Thermal Sci., vol. 5, pp. 227–237, 2013.
  • S. Bellan et al., Numerical Analysis of Charging and Discharging Performance of a Thermal Energy Storage System with Encapsulated Phase Change Material, Appl. Thermal Eng., vol. 71, pp. 481–500, 2014.
  • H. Kim, and M.-S. Liou, Adaptive Cartesian Sharp Interface Method for Three-Dimensional Multi-phase Flows, 19th AIAA Computational Fluid Dynamics Conference, June 22, 2009–June 25, 2009, San Antonio, TX, USA, 2009.
  • H.-J. Kim, and M.-S. Liou, Three Dimensional Cut-Cell Cartesian Method for Interfacial Discontinuity of Multi-phase Fluids, 18th AIAA Computational Fluid Dynamics Conference, June 25, 2007–June 28, 2007, Miami, FL, USA, pp. 2035–2051, 2007.
  • H.-J. Kim, and M.-S. Liou, Numerical Analysis of Compressible Two-Phase Flows Using Cartesian Cut-Cell Method, 46th AIAA Aerospace Sciences Meeting and Exhibit, January 7, 2008–January 10, 2008, Reno, NV, USA, 2008.
  • P. Lapka and P. Furmanski, Fixed Cartesian Grid Based Numerical Model for Solidification Process of Semi-transparent Materials II: Reflection and Refraction or Transmission of the Thermal Radiation at the Solid-Liquid Interface, Int. J. Heat Mass Transfer, vol. 55, pp. 4953–4964, 2012.
  • C.-F. Tai and J. N. Chung, A Direct Numerical Simulation of Axisymmetric Cryogenic Two-Phase Flows in a Pipe with Phase Change, Comput. Fluids, vol. 48, pp. 163–182, 2011.
  • Y. Yang and H. S. Udaykumar, Sharp Interface Cartesian Grid Method III: Solidification of Pure Materials and Binary Solutions, J. Comput. Phys., vol. 210, pp. 55–74, 2005.
  • H. S. Udaykumar and L. Mao, Sharp-Interface Simulation of Dendritic Solidification of Solutions, Int. J. Heat Mass Transfer, vol. 45, pp. 4793–4808, 2002.
  • V. R. Voller, A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems, Int. J. Heat Mass Transfer, vol. 30, pp. 1709–1719, 1987.
  • P. A. Galione, O. Lehmkuhl, J. Rigola, A. Oliva, and I. Rodriguez, Numerical Simulations of Thermal Energy Storage Systems with Phase Change Materials, 30th ISES Biennial Solar World Congress 2011, SWC 2011, vol. 6, pp. 4785–4796, 2011.
  • C. Gau and R. Viskanta, Melting and Solidification of a Pure Metal on a Vertical Wall, J. Heat Transfer, vol. 108, pp. 174–181, 1986.
  • D. McDaniel and N. Zabaras, A Least-Squares Front-Tracking Finite Element Method Analysis of Phase Change with Natural Convection, Int. J. Numer. Meth. Eng., vol. 37, pp. 2755–2777, 1994.
  • N. Hannoun, Resolving the Controversy over Tin and Gallium Melting in a Rectangular Cavity Heated from the Side, Numer. Heat Transfer B, vol. 44, pp. 253–276, 2003.
  • D. Mansutti and E. Bucchignani, On the Importance of Solid Deformations in Convection Dominated Liquid/Solid Phase Change of Pure Materials, Appl. Math., vol. 56, pp. 117–136, 2011.
  • M. Hribersek and G. Kuhn, Conjugate Heat Transfer by Boundary-Domain Integral Method, Eng. Anal. Bound. Elem., vol. 24, pp. 297–305, 2000.
  • B. Gore and M. Tandale, Review of Solar Cooking Using Latent Heat Storage, Appl. Mech. Mater., vol. 592–594, pp. 1761–1765, 2014.
  • P. P. Otte, Solar Cookers in Developing Countries—What Is Their Key to Success?, Energy Policy, vol. 63, pp. 375–381, 2013.
  • B. Iverson, S. T. Broome, and N. P. Siegel, Temperature Dependent Mechanical Property Testing of Nitrate Thermal Storage Salts, SolarPACES, Perpignan, France, 2010.
  • N. Siegel, Thermophysical Property Measurement of Nitrate Salt Heat Transfer Fluids, Proceedings of ASME 2011 5th International Conference on Energy Sustainability, p. 9, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.