Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 71, 2017 - Issue 6
368
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

General fully implicit discretization of the diffusion term for the finite volume method

, &
Pages 506-532 | Received 05 Jan 2017, Accepted 27 Apr 2017, Published online: 06 Jun 2017

References

  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, New York, NY, 1980.
  • C. Hirsch, Numerical Computation of Internal and External Flows, vols. 1, 2, John Wiley & Sons Ltd., Chichester, 1984.
  • J. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, 3rd ed., Springer, Berlin, Germany, 2002.
  • ANSYS Fluent, http://www.ansys.com
  • Star-CD, http://www.cd-adapco.com/products/star-cd®
  • Numeca, http://www.numeca.com/en
  • H. G. Weller, G. Tabor, H. Jasak, C. Fureby, and A. Tensorial, Approach to Computational Continuum Mechanics Using Object-Oriented Techniques, Comput. Phys., vol. 12, no. 6, pp. 620–631, 1998.
  • F. Palacios, M. Colonno, A. Aranake, A. Campos, S. Copeland, T. Economon, A. Lonkar, T. Lukacyk, T. Taylor, and J. Alonso, Stanford University Unstructured (SU2): An Open-Source Integrated Computational Environment for Multi-Physics Simulation and Design, 51st AIAA Aerospace Sciences Meeting, Dallas, Texas, January 7–10, 2013.
  • F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab®, Springer, Switzerland, 2015.
  • M. Darwish and F. Moukalled, A Compact Procedure for Discretization of the Anisotropic Diffusion Operator, Numer. Heat Transfer Part B Fundam., vol. 55, no. 5, pp. 339–360, 2009.
  • P. A. Jayantha and I. W. Turner, On the Use of Surface Interpolation Techniques in Generalized Finite Volume Strategies for Simulating Transport in Highly Anisotropic Porous Media, J. Comput. Appl. Math., vol. 152, pp. 199–216, 2003.
  • P. A. Jayantha and I. W. Turner, A Second Order Control-Volume Finite-Element Least-Squares Strategy for Simulating Diffusion in Anisotropic Media, J. Comput. Appl. Math., vol. 23, no. 1, pp. 1–16, 2005.
  • I. Demirdzic, On the Discretization of the Diffusion Term in Finite-Volume Continuum Mechanics, Numer. Heat Transfer Part B Fundam., vol. 68, no. 1, pp. 1–10, 2015.
  • I. Demirdzic, A Finite Volume Method for Computation of Fluid Flow in Complex Geometries, Ph.D. Thesis, University of London, 1982.
  • S. Muzaferija, Adaptive Finite Volume Method for Flow Predictions Using Unstructured Meshes and Multigrid Approach, Ph.D. Thesis, University of London, 1994.
  • I. Demirdzic and S. Musaferija, Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis Using Unstructured Moving Meshes with Cells of Arbitrary Topology, Comput. Methods Appl. Mech. Eng., vol. 125, pp. 235–255, 1995.
  • S. R. Mathur and J. Y. Murthy, A Pressure-Based Method for Unstructured Meshes, Numer. Heat Transfer B, vol. 31, pp. 195–215, 1997.
  • P. J. Zwart, G. D. Raithby, and M. J. Raw, Integrated Space-Time Finite-Volume Mthod for Moving-Boundary Problems, Numer. Heat Transfer Part B Fundam., vol. 34, no. 3, pp. 257–270, 1998.
  • D. J. Rose, H. Shao, and C. S. Henriquez, Discretization of Anisotropic Convection-Diffusion Equations, Convective M-Matrices and their Iterative Solution, VLSI Des., vol. 10, no. 4, pp. 485–529, 2000.
  • S. Wang, Solving Convection-Dominated Anisotropic Diffusion Equations by an Exponentially Fitted Finite Volume Method, Comput. Math. Appl., vol. 44, pp. 1249–1265, 2002.
  • E. Bertolazzi and G. Manzini, A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection–Diffusion Problems, SIAM J. Numer. Anal., vol. 43, no. 5, pp. 2172–2199, 2006.
  • K. Domelevo and P. Omnes, A Finite Volume Method for the Laplace Equation on Almost Arbitrary Two-Dimensional Grids, ESAIM Math. Modell. Numer. Anal., vol. 39, no. 6, pp. 1203–1249, 2005.
  • E. Eymard, T. Gallouêt, and R. Herbin, A Finite Volume Scheme for Anisotropic Diffusion Problems, Comptes Rendus Math., vol. 339, no. 4, pp. 299–302, 2004.
  • P. G. Ciarlet, Discrete Maximum Principle for Finite Difference Operators, Aequationes Math., vol. 4, pp. 338–352, 1970.
  • V. S. Borisov, On Discrete Maximum Principles for Linear Equation Systems and Mono-Tonicity of Difference Schemes, SIAM J. Matrix Anal. Appl., vol. 24, pp. 1110–1135, 2003.
  • V. S. Borisov and S. Sorek, On the Monotonicity of Difference Schemes for Computational Physics, SIAM J. Sci. Comput., vol. 25, pp. 1557–1584, 2004.
  • B. P. Leonard, Simple High-Accuracy Resolution Program for Convective Modelling of Discontinuities, Int. J. Numer. Methods Eng., vol. 8, pp. 1291–1318, 1988.
  • M. Darwish, A New High Resolution Scheme Based on the Normalized Variable Formulation, Numer. Heat Transfer Part B: Fundam., vol. 24, pp. 353–371, 1993.
  • X. Liu, P. Ming, W. Zhang, L. Fu, and L. Jing, Finite-Volume Methods for Anisotropic Diffusion Problems on Skewed Meshes, Numer. Heat Transfer Part B: Fundam., vol. 68, no. 3, pp. 239–256, 2015.
  • M. V. Umansky, M. S. Day, and T. D. Rognlien, On Numerical Solution of Strongly Anisotropic Diffusion Equation on Misaligned Grids, Numer. Heat Transfer Part B: Fundam., vol. 47, no. 6, pp. 533–554, 2005.
  • S. L. Truscott and I. W. Turner, An Investigation of the Accuracy of the Control-Volume Finite-Element Method Base on Triangular Prismatic Elements for Simulating Diffusion in Anisotropic Media, Numer. Heat Transfer Part B: Fundam., vol. 46, no. 3, pp. 243–268, 2004.
  • I. Aavatsmark, An Introduction to Multipoint Flux Approximations for Quadrilateral Grids, Comput. Geosci., vol. 6, pp. 405–432, 2002.
  • I. Aavatsmark, G. Eigestad, B. Mallison, and J. Nordbotten, A Compact Multipoint Flux Approximation Method with Improved Robustness, Numer. Methods Partial Differ. Equations, vol. 24, no. 5, pp. 1329–1360, 2008.
  • G. Manzini and M. Putti, Mesh Locking Effects in the Finite Volume Solution of 2-D Anisotropic Diffusion Equations, J. Comput. Phys., vol. 220, pp. 751–771, 2007.
  • C. Le Potier, Schema Volumes Finis Monotone pour des Operateurs de Diffusion Fortement Anisotropes sur des Maillages de Triangle Non Structures, Comptes Rendus Math., vol. 341, pp. 787–792, 2005.
  • K. Lipnikov, D. Svyatskiy, M. Shashkov, and Y. Vassilevski, Monotone Finite Volume Schemes for Diffusion Equations on Unstructured Triangular and Shape-Regular Polygonal Meshes, J. Comput. Phys., vol. 227, pp. 492–512, 2007.
  • K. Lipnikov, D. Svyatskiy, and Y. Vassilevski, Interpolation-Free Monotone Finite Volume Method for Diffusion Equations on Polygonal Meshes, J. Comput. Phys., vol. 228, pp. 703–716, 2009.
  • K. Nikitin and Y. Vassilevski, A Monotone Nonlinear Finite Volume Method for Advection–Diffusion Equations on Unstructured Polyhedral Meshes in 3D, Russ. J. Numer. Anal. Math. Modell., vol. 25, no. 4, pp. 335–358, 2010.
  • I. Kapyrin, A Family of Monotone Methods for the Numerical Solution of Three-Dimensional Diffusion Problems on Unstructured Tetrahedral Meshes, Dokl. Math., vol. 76, no. 2, pp. 734–738, 2007.
  • C. Le Potier, Finite Volume Scheme Satisfying Maximum and Minimum Principles for Anisotropic Diffusion Operators, in R. Eymard and J. M. Herard (eds.), Finite Volume for Complex Applications, pp. 103–118, Wiley-ISTE, London, 2008.
  • K. Lipnikov, D. Svyatskiy, and Y. Vassilevski, Minimal Stencil Finite Volume Scheme with the Discrete Maximum Principle, Russ. J. Numer. Anal. Math. Modell., vol. 27, no. 4, pp. 369–385, 2012.
  • K. Lipnikov, D. Svyatskiy, and Y. Vassilevski, A Monotone Finite Volume Method for Advection-Diffusion Equations on Unstructured Polygonal Meshes, J. Comput. Phys., vol. 229, pp. 4017–4032, 2010.
  • C. Le Potier, A Finite Volume Method for the Approximation of Highly Anisotropic Diffusion Operators on Unstructured Meshes, Finite Volumes for Complex Applications IV, Marrakech, Marocco, July 4–8, 2005.
  • M. Darwish and F. Moukalled, Normalized Variable and Space Formulation Methodology for High-Resolution Schemes, Numer. Heat Transfer Part B: Fundam., vol. 26, no. 1, pp. 79–96, 1994.
  • F. Moukalled and M. Darwish, New Family of Adaptive Very High Resolution Schemes, Numer. Heat Transfer Part B: Fundam., vol. 34, pp. 215–239, 1998.
  • M. Darwish and F. Moukalled, The χ-Schemes: A New Consistent High-Resolution Formulation Based on the Normalized Variable Methodology, Comput. Methods Appl. Mech. Eng., vol. 192, pp. 1711–1730, 2003.
  • M. Darwish and F. Moukalled, TVD Schemes for Unstructured Grids, Int. J. Heat Mass Transfer, vol. 46, no. 4, pp. 599–611, 2003.
  • M. Darwish, W. Geahchan, and F. Moukalled, Fully Implicit Coupling for Non-Matching Grids, International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2010), AIP Conference Proceedings, Crete, Greece, 19–25 September, 2010.
  • M. Darwish, W. Geahchan, and F. Moukalled, A Fully Implicit Method for Coupling Multi-Block Meshes with Non-Matching Interface Grids, Numer. Heat Transfer Part B: Fundam., vol. 71, no. 2, pp. 109–132, 2017.
  • L. Agelas, R. Eymard, and R. Herbin, A Nine-Point Finite Volume Scheme for the Simulation of Diffusion in Heterogeneous Media, Comptes Rendus de l’Academie Des Sciences, Paris, Serie I, Mathematique, Elsevier, Paris, France, vol. 347, pp. 673–676, 2009.
  • V. Venkatakrishnan, On the Accuracy of Limiters and Convergence to Steady State Solutions, AIAA Paper 93–0880, 1993.
  • V. Venkatakrishnana, Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters, J. Comput. Phys., vol. 118, pp. 120–130, 1995.
  • Z. J. Zang, A FAS Nested Multi-Grid Viscous Flow Solver for Adaptive Cartesian/Quad Grids, Int. J. Numer. Methods Fluids, vol. 33, pp. 657–680, 2000.
  • M. Keyhani and R. A. Polehn, Finite Difference Modeling of Anisotropic Flows, ASME J. Heat Transfer, vol. 117, pp. 458–464, 1995.
  • A. I. Shestakov, D. S. Kershaw, and G. B. Zimmerman, Test Problems in Radiative Transfer Calculations, Nuclear Sci. Eng., vol. 105, no. 1, pp. 88–104, 1990.
  • M. Mlacnik, L. Durlofsky, R. Juanes, and H. Tchelepi, Multipoint Flux Approximations for Reservoir Simulation, 12th annual SUPRI-HW Meeting, Standford University, November 18–19, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.