Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 3
129
Views
0
CrossRef citations to date
0
Altmetric
Articles

A new numerical scheme for using the two-energy equation model for turbulent buoyant flow in a composite enclosure

& ORCID Icon
Pages 578-602 | Received 30 Jul 2018, Accepted 23 Oct 2018, Published online: 04 Jan 2019

References

  • K. L. Walker and G. M. Homsy, “Convection in porous cavity,” J. Fluid Mech., vol. 87, no. 03, pp. 449–474, 1978.
  • A. Bejan, “On the boundary layer regime in a vertical enclosure filled with a porous medium,” Lett. Heat Mass Transfer, vol. 6, no. 2, pp. 93–102, 1979.
  • V. Prasad and F. A. Kulacki, “Convective heat transfer in a rectangular porous Cavity-Effect of aspect ratio on flow structure and heat transfer,” J. Heat Transfer, vol. 106, no. 1, pp. 158–165, 1984.
  • C. Beckermann, R. Viskanta, and S. Ramadhyani, “A numerical study of Non-Darcian natural convection in a vertical enclosure filled with a porous medium,” Num. Heat Transfer, vol. 10, no. 6, pp. 557–570, 1986.
  • R. J. Gross, M. R. Bear, and C. E. Hickox, The Applications of Flux-Corrected Transported (FCT) to High Rayleigh Number Natural Convection in a Porous Medium, Proc, 8th Int. Heat Transfer Conf., CA, (1986).
  • D. M. Manole, and J. L. Lage, Numerical Benchmark Results for Natural Convection in a Porous Medium Cavity, HTD, Heat and mass Transfer in Porous Media, ASME Conference, 216 (1992) 55–60.
  • S. L. Moya, E. Ramos, and M. Sen, “Numerical study of natural convection in a tilted rectangular porous material,” Int. J. Heat Mass Transfer, vol. 30, no. 4, pp. 741–756, 1987.
  • Y. C. Wang, J. Yang, Y. Pan, X. J. Zhang, and Y. F. Yu, “Turbulent natural convection heat transfer with thermal radiation in a rectangular enclosure partially filled with porous medium,” Num. Heat Transfer; Part A: Appl., vol. 70, no. 6, pp. 639–649, 2016.
  • L. Begum and M. Hasan, “A numerical study of 3D turbulent melt flow and solidification in a direct chill slab caster with a porous combo bag melt distributor,” Num. Heat Transfer; Part A: Appl., vol. 67, no. 7, pp. 746–770, 2015.
  • M. Dong, and M. Z. Xie, “Numerical investigation on mass dispersion in turbulent flows through porous media with high porosity,” Num. Heat Transfer; Part A: Appl., vol. 67, no. 3, pp. 293–312, 2015.
  • A. AlAmiri, K. Khanafer, and K. Vafai, “Fluid-structure interactions in a tissue during hyperthermia,” Num. Heat Transfer; Part A: Appl., vol. 66, no. 1, pp. 1–16, 2014.
  • D. A. Nield and A. Bejan, Convection in Porous Media, New York: Springer, 1992.
  • D. B. Ingham and I. Pop, Transport Phenomena in Porous Media, Amsterdam: Elsevier, 1998.
  • A. C. Baytas and I. Pop, “Free convection in oblique enclosures filled with a porous medium,” Int. J. Heat Mass Transfer, vol. 42, no. 6, pp. 1047–1057, 1999.
  • D. Kinoshita, A. Da Silveira Neto, F. P. Mariano, R. A. P. Da Silva, and R. Serfaty, “A novel immersed boundary/Fourier pseudospectral method for flows with thermal effects,” Num. Heat Transfer, Part B: Fundam., vol. 69, no. 4, pp. 312–333, 2016.
  • D. Kinoshita, E. L. Martlnez Padilla, A. da Silveira Neto, F. Pamplona Mariano, and R. Serfaty, “Fourier pseudospectral method for nonperiodical problems: a general immersed boundary method for three types of thermal boundary conditions,” Num. Heat Transfer, Part B: Fundam., vol. 70, no. 6, pp. 537–558, 2016.
  • V. Kriventsev, “A rule of minimal energy dissipation in modeling of channel flow turbulence,” Num. Heat Transfer, Part 13: Fund., vol. 69, no. 2, pp. 85–95, 2016.
  • M. J. S. de Lemos, Turbulence in Porous Media: Modeling and Applications, 2nd ed. Amsterdam: Elsevier, 2012.
  • M. J. S. de Lemos, and E. J. Braga, “Modeling of turbulent natural convection in saturated rigid porous media,” Int. Commun. Heat Mass Transfer, vol. 30, no. 5, pp. 615–624, 2003.
  • E. J. Braga, and M. J. S. de Lemos, “Turbulent natural convection in a porous square cavity computed with a macroscopic k-ε model,” Int. J. Heat Mass Transfer, vol. 47, no. 26, pp. 5639–5650, 2004.
  • E. J. Braga, and M. J. S. de Lemos, “Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic Two-Equation model,” Int. J. Heat Mass Transfer, vol. 49, no. 23–24, pp. 4340–4351, 2006.
  • E. J. Braga and M. J. S. de Lemos, “Laminar and turbulent free convection in a composite enclosure,” Int. J. Heat Mass Transfer, vol. 52, no. 3-4, pp. 588–596, 2009.
  • M. J. S. de Lemos and C. B. Masciarelli, “Turbulent natural convection in a composite annulus using a novel numerical scheme and the thermal nonequilibrium hypothesis,” Num. Heat Transfer, Part A: Appl., vol. 71, no. 8, pp. 837–854, 2017.
  • D. R. Graminho and M. J. S. de Lemos, “Laminar confined impinging jet into a porous layer,” Num. Heat Transfer. Part A, Appl., vol. 54, no. 2, pp. 151–177, 2008.
  • F. T. Dorea and M. J. S. de Lemos, “Simulation of laminar impinging jet on a porous medium with a thermal non-equilibrium model,” Int. J. Heat Mass Transfer, vol. 53, no. 23-24, pp. 5089–5101, 2010.
  • W. C. Galuppo and M. J. S. de Lemos, “Turbulent heat transfer past a sudden expansion with a porous insert using a Non-Linear model,” Num. Heat Transfer, Part A: Appl., vol. 71, no. 3, pp. 290–310, 2017.
  • E. J. Braga and M. J. S. de Lemos, “Heat transfer in enclosures having a fixed amount of solid material simulated with heterogeneous and homogeneous models,” Int. J. Heat Mass Transfer, vol. 48, no. 23-24, pp. 4748–4765, 2005.
  • M. J. S. de Lemos and E. J. Braga, “Use of porous-continuum and continuum models for determining the permeability of porous cavities under turbulent free convection,” Num. Heat Transfer, Part B: Fundam., vol. 73, no. 2, pp. 78–93, 2018.
  • M. B. Saito and M. J. S. de Lemos, “A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media,” Int. J. Heat Mass Transfer, vol. 53, no. 11-12, pp. 2424–2433, 2010.
  • S. Krishnan, J. Y. Murthy, and S. V. Garimella, “A two-temperature model for the analysis of passive thermal control systems,” J. Heat Transfer, vol. 126, no. 4, pp. 628–637, 2004.
  • W. G. Gray, and L. P.C.Y, “On the theorems for local volume averaging of multiphase system,” Int. J. Multiphase Flow, vol. 12, pp. 401–410, 1977.
  • F. Kuwahara, F. Shirota, M. Nakayama, and A. “A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media,” Int. J. Heat Mass Transfer, vol. 44, no. 6, pp. 1153–1159, 2001.
  • B. Alazmi, and K. Vafai, “Analysis of variants within the porous media transport models,” J. Heat Transfer, vol. 122, no. 2, pp. 303–326, 2000.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, New York: Hemisphere, 1980.
  • H. L. Stone, “Iterative solution of implicit approximations of Multi-Dimensional partial differential equations,” SIAM J. Num. Anal., vol. 5, no. 3, pp. 530–558, 1968.
  • B. A. Kader and A. M. Yaglom, “Heat and mass transfer laws for fully turbulent wall flows,” Int. J. Heat Mass Transfer, vol. 15, no. 12, pp. 2329–2351, 1972.
  • B. E. Launder, and D. B. Spalding, “The numerical computation of turbulent flows,” Comp. Meth. Appl. Mech. Eng., vol. 3, no. 2, pp. 269–289, 1974.
  • Z. U. A. Warsi, Fluid Dynamics – Theoretical and Computational Approaches, Boca Raton: CRC Press, 1993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.