Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 5
120
Views
1
CrossRef citations to date
0
Altmetric
Articles

A new stability parameter in streamline upwind meshless Petrov–Galerkin method for convection–diffusion problems at large Peclet number

, &
Pages 746-764 | Received 30 Dec 2018, Accepted 04 Feb 2019, Published online: 25 Mar 2019

References

  • E. Onate, S. Idelsohn, O. C. Zienkiewicz, and R. L. Taylor, “A finite point method in computational mechanics. Applications to convective transport and fluid flow,” Int. J. Numer. Methods Eng., vol. 39, pp. 3839–3866, 1996. DOI: 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R.
  • S. N. Atluri, The Meshless Method (MLPG) for Domain & BIE Discretizations, Tech. Science Press, Encino. CA, 2004.
  • W. K. Liu, S. Jun, D. Sihling, Y. Chen, and W. Hao, “Multriresolution reproducing kernel particle method for computational fluid mechanics,” Int. J. Num. Methods Fluids, vol. 24, no. 12, pp. 1391–1415, 1997. DOI: 10.1002/(SICI)1097-0363(199706)24:12<1391::AID-FLD566>3.0.CO;2-2.
  • H. Lin, S.N. Atluri, “Meshless local Petrov-Galerkin (MLPG) method for convection-diffusion problems,” CMES Comput Model Eng. Sci., vol. 1, pp. 45–60, 2000.
  • H. Lin, S.N. Atluri, “The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equation,” CMES Comput. Model Eng. Sci., vol. 2, pp. 117–142, 2001.
  • A. N. Brooks, and T. J. R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations,” Comput. Methods Appl. Mech. Eng., vol. 32, no. 1–3, pp. 199–259, 1982. DOI: 10.1016/0045-7825(82)90071-8.
  • T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, “A new finite element formulation for computational fluid dynamics: VII. The Galerkin-least-squares method for advective-diffusion equations,” Comput. Methods Appl. Mech. Eng., vol. 73, no. 2, pp. 173–189, 1989. DOI: 10.1016/0045-7825(89)90111-4.
  • X. H. Wu, Y. J. Dai, and W. Q. Tao, “MLPG/SUPG method for Convection-Dominated problems,” Numer. Heat Tran. B, vol. 61, no. 1, pp. 36–51, 2012. DOI: 10.1080/10407790.2011.630962.
  • A. Ali, and N. Mehdi, “On the numerical solution of generalized convection heat transfer problems via the method of proper closure equations - part II: Application to test problems,” Numer. Heat Tran. B, vol. 70, pp. 204–222, 2016.
  • D. Pan, “A high-order finite volume method for solving one-dimensional convection and diffusion equations,” Numer. Heat Tran. B, vol. 71, no. 6, pp. 533–548, 2017. DOI: 10.1080/10407790.2017.1326769.
  • W. You, Z. Y. Li, and W. Q. Tao, “A physically consistent FVM interpolation scheme based on the discretized convection-diffusion equation,” Numer. Heat Tran. B, vol. 71, no. 5, pp. 443–455, 2017. DOI: 10.1080/10407790.2017.1309174.
  • A. A. Oberai, and J. Wanderer, “A dynamic approach for evaluating parameters in a numerical method,” Int. J. Numer. Methods Eng., vol. 62, no. 1, pp. 50–71, 2005. DOI: 10.1002/nme.1181.
  • V. John, P. Knobloch, and S. B. Savescu, “A posteriori optimization of parameters in stabilized methods for convection-diffusion problems-Part I,” Comput. Methods Appl. Mech. Eng., vol. 200, no. 41–44, pp. 2916–2929, 2011. DOI: 10.1016/j.cma.2011.04.016.
  • P. Lukas, “Optimization of parameters in SDFEM for different spaces of parameters,” Appl. Math. Comput., vol. 267, pp. 711–715, 2015.
  • S. C. Brenner, and L. R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York, 1994.
  • P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, 1987.
  • V. Girault, and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, New York, 1986.
  • I. Christie, D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz, “Finite element methods for second order differential equations with significant first derivatives,” Int. J. Numer. Methods Eng., vol. 10, no. 6, pp. 1389–1396, 1976. DOI: 10.1002/nme.1620100617.
  • H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, New York, 2005.
  • A. S. Mounim, “A stabilized finite element method for convection–Diffusion problems,” Numer. Methods Part. D. E, vol. 28, pp. 1916–1943, 2012.
  • T. J. R. Hughes, M. Mallet, and A. Mizukami, “A new finite element formulation for computational fluids dynamics III: The generalize streamline operator for multidimensional advective-diffusive system,” Comput. Methods Appl. Mech. Eng., vol. 58, no. 2, pp. 305–328, 1986.
  • C. Baiocchi, F. Brezzi, and L. P. Franca, “Virtual bubbles and Galerkin least squares type method,” Comput. Methods Appl. Mech. Eng., vol. 105, no. 1, pp. 125–141, 1993. DOI: 10.1016/0045-7825(93)90119-I.
  • F. Brezzi, M. O. Baiocchi, L. P. Franca, M. Mallet, and G. Roge, “A relationship between stabilized finite element method and the Galerkin method with bubble function,” Comput. Methods Appl. Mech, vol. 96, no. 1, pp. 117–129, 1992. DOI: 10.1016/0045-7825(92)90102-P.
  • F. Brezzi, L. P. Franca, and A. Russo, “Further consideration on residual-free bubbles for advective-diffusion equations,” Comput. Methods Appl. Mech. Eng., vol. 166, no. 1–2, pp. 25–33, 1998. DOI: 10.1016/S0045-7825(98)00080-2.
  • C. Romano, “On stability finite element method for linear systems of convection-diffusion-reaction equations, comput,” Methods Appl. Mech. Eng., vol. 188, pp. 61–82, 2012.
  • T. J. R. Hughes, M. Mallet, and M. Akira, “A new finite element formulation for computational fluid dynamics II beyond SUPG,” Comput. Methods Appl. Mech. Eng., vol. 54, no. 3, pp. 341–355, 1986. DOI: 10.1016/0045-7825(86)90110-6.
  • R. M. Smith, and A. G. Hutton, “The numerical treatment of advection: A performance comparison of current methods,” Numer. Heat Trans., vol. 5, pp. 439–461, 1982. DOI: 10.1080/10407788208913458.
  • B. P. Leonard, and S. Mokhtari, “ULTRA-SHARP solution of the Smith-Hutton problem,” Int. J. Numer. Methods HFF, vol. 2, no. 5, pp. 407–427, 1992. DOI: 10.1108/eb017502.
  • B. P. Leonard, “Simple high-accuracy resolution program for convection modelling of discontinuities,” Int. J. Numer. Methods Fluids, vol. 8, no. 10, pp. 1291–1318, 1988. DOI: 10.1002/fld.1650081013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.