Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 6
381
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

A high-resolution Navier–Stokes solver for direct numerical simulation of free shear flow

, , &
Pages 840-860 | Received 30 Dec 2018, Accepted 06 Feb 2019, Published online: 18 Mar 2019

References

  • X. Jiang and C.-H. Lai, Numerical Techniques for Direct and Large-Eddy Simulations. Boca Raton, FL: CRC Press, 2016.
  • O. Ubbink, and R. Issa, “A method for capturing sharp fluid interfaces on arbitrary meshes,” J. Comput. Phys., vol. 153, no. 1, pp. 26–50, 1999. DOI:10.1006/jcph.1999.6276.
  • C.-H. Lin, and C. Lin, “Simple high-order bounded convection scheme to model discontinuities,” AIAA J., vol. 35, no. 3, pp. 563–565, 1997. DOI:10.2514/3.13541.
  • X.-D. Liu, S. Osher, and T. Chan, “Weighted essentially non-oscillatory schemes,” J. Comput. Phys., vol. 115, no. 1, pp. 200–212, 1994. DOI:10.1006/jcph.1994.1187.
  • G.-S. Jiang, and C.-W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys., vol. 126, no. 1, pp. 202–228, 1996. DOI:10.1006/jcph.1996.0130.
  • D. Tafti, “Comparison of some upwind-biased high-order formulations with a second-order Central-difference scheme for time integration of the incompressible Navier–Stokes equations,” Comput. Fluids, vol. 25, no. 7, pp. 647–665, 1996. DOI:10.1016/0045-7930(96)00015-1.
  • Y. Shen, G. Zha, and X. Chen, “High order conservative differencing for viscous terms and the application to vortex-induced vibration flows,” J. Comput. Phys., vol. 228, no. 22, pp. 8283–8300, 2009. DOI:10.1016/j.jcp.2009.08.004.
  • P. He, “A high order finite difference solver for massively parallel simulations of stably stratified turbulent channel flows,” Comput. Fluids, vol. 127, pp. 161–173, 2016. DOI:10.1016/j.compfluid.2015.12.012.
  • H. Zinjala, and J. Banerjee, “A Lagrangian-Eulerian volume-tracking with linearity-preserving interface reconstruction,” Numer. Heat Transf. B Fund., vol. 68, no. 5, pp. 459–478, 2015. DOI:10.1080/10407790.2015.1036618.
  • D. Drikakis, and W. Rider, High-resolution Methods for Incompressible and Low-Speed Flows. Berlin: Springer Science & Business Media, 2006.
  • J. Kim, P. Moin, and R. Moser, “Turbulence statistics in fully developed channel flow at low reynolds number,” J. Fluid Mech., vol. 177, no. 1, pp. 133–166, 1987. DOI:10.1017/S0022112087000892.
  • M. Kozuka, Y. Seki, and H. Kawamura, “DNS of turbulent heat transfer in a channel flow with a high spatial resolution,” Int. J. Heat Fluid Flow, vol. 30, no. 3, pp. 514–524, 2009. DOI:10.1016/j.ijheatfluidflow.2009.02.023.
  • C. Flageul, and I. Tiselj, “Impact of unresolved smaller scales on the scalar dissipation rate in direct numerical simulations of wall bounded flows,” Int. J. Heat Fluid Flow, vol. 68, pp. 173–179, 2017. DOI:10.1016/j.ijheatfluidflow.2017.10.009.
  • V. De Angelis, P. Lombardi, and S. Banerjee, “Direct numerical simulation of turbulent flow over a wavy wall,” Phys. Fluids, vol. 9, no. 8, pp. 2429–2442, 1997. DOI:10.1063/1.869363.
  • B. Boersma, G. Brethouwer, and F. Nieuwstadt, “A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet,” Phys. Fluids, vol. 10, no. 4, pp. 899–909, 1998. DOI:10.1063/1.869626.
  • T. B. Gohil, A. K. Saha, and K. Muralidhar, “Numerical study of instability mechanisms in a circular jet at low Reynolds numbers,” Comput. Fluids, vol. 64, pp. 1–18, 2012. DOI:10.1016/j.compfluid.2012.04.016.
  • T. B. Gohil, A. K. Saha, and K. Muralidhar, “Direct numerical simulation of naturally evolving free circular jet,” J. Fluids Eng., vol. 133, no. 11, pp. 111203, 2011. DOI:10.1115/1.4005199.
  • T. B. Gohil, A. K. Saha, and K. Muralidhar, “Direct numerical simulation of free and forced square jets,” Int.l J. Heat Fluid Flow, vol. 52, pp. 169–184, 2015. DOI:10.1016/j.ijheatfluidflow.2015.01.003.
  • T. B. Gohil, A. K. Saha, and K. Muralidhar, “Control of flow in forced jets: a comparison of round and square cross sections,” J. Visual., vol. 13, no. 2, pp. 141–149, 2010. DOI:10.1007/s12650-009-0020-7.
  • A. Vreman, “The projection method for the incompressible Navier–Stokes equations: the pressure near a no-slip wall,” J. Comput. Phys., vol. 263, pp. 353–374, 2014. DOI:10.1016/j.jcp.2014.01.035.
  • J. Kim, and H. Choi, “Large eddy simulation of a circular jet: effect of inflow conditions on the near field,” J. Fluid Mech., vol. 620, pp. 383–411, 2009. DOI:10.1017/S0022112008004722.
  • C.-W. Shu, and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” J. Comput. Phys., vol. 77, no. 2, pp. 439–471, 1988. DOI:10.1016/0021-9991(88)90177-5.
  • P. Tkalich, “Derivation of high-order advection–diffusion schemes,” J. Hydroinform., vol. 8, no. 3, pp. 149–164, 2006. DOI:10.2166/hydro.2006.008.
  • N. Črnjarić-Žic, S. Maćešić, and B. Crnković, “Efficient implementation of WENO schemes to nonuniform meshes,” Ann. Univ. Ferrara, vol. 53, no. 2, pp. 199–215, 2007. DOI:10.1007/s11565-007-0013-1.
  • R. Smith, and A. Hutton, “The numerical treatment of advection: A performance comparison of current methods,” Numer. Heat Transf. A Appl., vol. 5, no. 4, pp. 439–461, 1982. DOI:10.1080/10407798208546996.
  • P. Roy, N. Anand, and D. Donzis, “A parallel multigrid finite-volume solver on a collocated grid for incompressible Navier-Stokes equations,” Numer. Heat Transf. B Fund., vol. 67, no. 5, pp. 376–409, 2015. DOI:10.1080/10407790.2014.985980.
  • Z.-H. Li, L. Chen, and W.-Q. Tao, “A parallel scalable multigrid method and HOC scheme for anisotropy elliptic problems,” Numer. Heat Transf. B Fund., vol. 71, no. 4, pp. 346–358, 2017. DOI:10.1080/10407790.2017.1293959.
  • V. Aggarwal, V. H. Gada, and A. Sharma, “Parallelization methodology and performance study for level-set-method-based simulation of a 3–D transient two-phase flow,” Numer. Heat Transf. B Fund., vol. 63, no. 4, pp. 327–356, 2013. DOI:10.1080/10407790.2013.771995.
  • S. Saincher, S. Dave, C. Anghan, and J. Banerjee, “A parallelized inflow-boundary-based numerical tank: Performance on individual SMA nodes,” in Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), pp. 663–672, Springer, 2019.
  • A. Michalke, “On spatially growing disturbances in an inviscid shear layer,” J. Fluid Mech., vol. 23, no. 3, pp. 521–544, 1965. DOI:10.1017/S0022112065001520.
  • C. B. da Silva, and O. Métais, “Vortex control of bifurcating jets: a numerical study,” Phys. Fluids, vol. 14, no. 11, pp. 3798–3819, 2002. DOI:10.1063/1.1506922.
  • P. C. Babu, and K. Mahesh, “Upstream entrainment in numerical simulations of spatially evolving round jets,” Phys. Fluids, vol. 16, no. 10, pp. 3699–3705, 2004. DOI:10.1063/1.1780548.
  • M. Bisoi, M. K. Das, S. Roy, and D. K. Patel, “Large eddy simulation of three-dimensional plane turbulent free jet flow,” Eur. J. Mech. B Fluids, vol. 65, pp. 423–439, 2017. DOI:10.1016/j.euromechflu.2017.02.003.
  • I. Sezai, “Implementation of boundary conditions in pressure-based finite volume methods on unstructured grids,” Numer. Heat Transfer B Fund., vol. 72, no. 1, pp. 82–107, 2017. DOI:10.1080/10407790.2017.1338077.
  • I. Orlanski, “A simple boundary condition for unbounded hyperbolic flows,” J. Comput. Phys., vol. 21, no. 3, pp. 251–269, 1976. DOI:10.1016/0021-9991(76)90023-1.
  • G. Taub, H. Lee, S. Balachandar, and S. Sherif, “A direct numerical simulation study of higher order statistics in a turbulent round jet,” Phys. Fluids, vol. 25, no. 11, pp. 115102, 2013. DOI:10.1063/1.4829045.
  • C. Walchshofer, H. Steiner, and G. Brenn, “Robust outflow boundary conditions for strongly buoyant turbulent jet flames,” Flow Turbul. Comb., vol. 86, no. 3–4, pp. 713–734, 2011. DOI:10.1007/s10494-010-9308-x.
  • J. Craske, and M. van Reeuwijk, “Robust and accurate open boundary conditions for incompressible turbulent jets and plumes,” Comput. Fluids, vol. 86, pp. 284–297, 2013. DOI:10.1016/j.compfluid.2013.06.026.
  • N. Uddin, S. O. Neumann, and B. Weigand, “Heat transfer enhancement by velocity field excitation for an impinging round jet,” Numer. Heat Transf. A Appl., vol. 69, no. 8, pp. 811–824, 2016. DOI:10.1080/10407782.2015.1090840.
  • C. Anghan, S. Dave, S. Saincher, and J. Banerjee, “An accurate open outlet boundary condition for direct numerical simulation of incompressible round jet,” in 7th International and 45th National Conference on Fluid Mechanics and Fluid Power (FMFP2018), Mumbai, India, 2018.
  • J. Hunt, A. Wray, and P. Moin, “Eddies, streams, and convergence zones in turbulent flows,” in Studying Turbulence Using Numerical Simulation Databases, 2. Stanford, CA: Stanford University, 1988.
  • T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and R. Rooholamini, “An empirical study of hyper-threading in high performance computing clusters,” Linux HPC Revol., vol. 45, pp. 1–12, 2002.
  • S. Yuu, K. Ikeda, and T. Umekage, “Flow-field prediction and experimental verification of low reynolds number gas-particle turbulent jets,” Colloids Surf. A Physicochem. Eng. Aspects, vol. 109, pp. 13–27, 1996. DOI:10.1016/0927-7757(95)03470-6.
  • N. Panchapakesan, and J. Lumley, “Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet,” J. Fluid Mech., vol. 246, no. 1, pp. 197–223, 1993. DOI:10.1017/S0022112093000096.
  • C. Bogey, and C. Bailly, “Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation,” J. Fluid Mech., vol. 627, pp. 129–160, 2009. DOI:10.1017/S0022112009005801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.