Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 1
368
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

An adaptive time-stepping semi-Lagrangian method for incompressible flows

& ORCID Icon
Pages 1-18 | Received 01 Jan 2019, Accepted 03 Mar 2019, Published online: 15 Apr 2019

References

  • R. Courant, E. Isaacson and M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences,” Commun. Pure Appl. Math., vol. 5, no. 3, pp. 243–255, 1952. DOI: 10.1002/cpa.3160050303.
  • A. Staniforth, J. Côté, A. Staniforth and J. Côté, “Semi-Lagrangian integration schemes for atmospheric models—a review,” Mon. Weather Rev., vol. 119, no. 9, pp. 2206–2223, 1991. DOI: 10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2.
  • A. McDonald, “Boundary conditions for semi-Lagrangian schemes: testing some alternatives in one-dimensional models,” Mon. Weather Rev., vol. 128, no. 12, pp. 4084–4096, 2000. DOI: 10.1175/1520-0493(2000)129<4084:BCFSLS>2.0.CO;2.
  • A. Priestley, “A quasi-conservative version of the semi-Lagrangian advection scheme,” Mon. Weather Rev., vol. 121, no. 2, pp. 621–629, 1993. DOI: 10.1175/1520-0493(1993)121<0621:AQCVOT>2.0.CO;2.
  • O.-Y. Song, O.-Y. Song, H. Shin and H. Ko, “Stable but non-dissipative water,” ACM Trans. Graph, vol. 24, no. 1, pp. 81–97, 2005. DOI: 10.1145/1037957.1037962.
  • Z. Wang, J. Yang and F. Stern, “A simple and conservative operator-splitting semi-Lagrangian volume-of-fluid advection scheme,” J. Comput. Phys., vol. 231, no. 15, pp. 4981–4992, 2012.
  • D. Enright, R. Fedkiw, J. Ferziger and I. Mitchell, “A hybrid particle level set method for improved interface capturing,” J. Comput. Phys., vol. 183, no. 1, pp. 83–116, 2002. DOI: 10.1006/jcph.2002.7166.
  • W. Zuo, M. Jin and Q. Chen, “Reduction of numerical diffusion in FFD model,” Eng. Appl. Comput. Fluid Mech., vol. 6, pp. 234–247, 2012. DOI: 10.1080/19942060.2012.11015418.
  • M. Jin and Q. Chen, “Improvement of fast fluid dynamics with a conservative semi-Lagrangian scheme,” Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 1, pp. 2–18, 2015. DOI: 10.1108/HFF-04-2013-0119.
  • J. Stam and J. Stable, “Fluids,” in Proceedings of the 26th annual conference on computer graphics and interactive techniques, 1999, pp. 121–128.
  • R. Fedkiw, J. Stam and H. W. Jensen, “Visual simulation of smoke,” in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH’01, 2001, pp. 15–22.
  • M. J. Grote and T. Mitkova, “Explicit Local Time-Stepping Methods for Time-Dependent Wave Propagation,” in Direct and Inverse Problems in Wave Propagation and Applications. Berlin, 2013, pp. 187–218
  • V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, “Locally implicit discontinuous Galerkin method for time domain electromagnetics,” J. Comput. Phys., vol. 229, no. 2, pp. 512–526, 2010. DOI: 10.1016/j.jcp.2009.09.038.
  • M. J. Maurice, J. Zucrow and J. D. Hoffman. Gas Dynamics. New York: Wiley, 1976.
  • L. Bonaventura and R. Ferretti, “Flux Form Semi-Lagrangian Methods for Parabolic Problems,” Commun. Appl. Ind. Math., vol. 7, no. 3, pp. 56–73, 2016.
  • M. Zerroukat, “A simple mass conserving semi-Lagrangian scheme for transport problems,” J. Comput. Phys., vol. 229, no. 4, pp. 9011–9019, 2010.
  • S. Verma, Y. Xuan and G. Blanquart, “An improved bounded semi-Lagrangian scheme for the turbulent transport of passive scalars,” J. Comput. Phys., vol. 272, pp. 1–22, 2014. DOI: 10.1016/j.jcp.2014.03.062.
  • E. Kaas, “A simple and efficient locally mass conserving semi-Lagrangian transport scheme,” Tellus A, vol. 60, no. 2, pp. 305–320, 2008. DOI: 10.1111/j.1600-0870.2007.00293.x.
  • M. Lentine, J. T. Grétarsson and R. Fedkiw, “An unconditionally stable fully conservative semi-Lagrangian method,” J. Comput. Phys., vol. 230, no. 8, pp. 2857–2879, 2011. DOI: 10.1016/j.jcp.2010.12.036.
  • M. Zerroukat, N. Wood and A. Staniforth, “A monotonic and positive–definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme,” Q. J. R. Meteorol. Soc., vol. 131, no. 611, pp. 2923–2936, 2005. DOI: 10.1256/qj.04.97.
  • M. Zerroukat, N. Wood, and A. Staniforth, “SLICE-S: a semi-Lagrangian inherently conserving and efficient scheme for transport problems on the sphere,” Q. J. R. Meteorol. Soc., vol. 130, no. 602, pp. 2649–2664, 2004.
  • D. Xiu, and G. E. Karniadakis, “A semi-Lagrangian high-order method for Navier–Stokes equations,” J. Comput. Phys., vol. 172, no. 2, pp. 658–684, 2001. DOI: 10.1006/jcph.2001.6847.
  • M. Spiegelman, and R. F. Katz, “A semi-Lagrangian Crank-Nicolson algorithm for the numerical solution of advection-diffusion problems,” Geochem. Geophys. Geosyst., vol. 7, no. 4, pp. 1–12, 2006. DOI: 10.1029/2005GC001073.
  • B. Kim, Y. Liu, I. Llamas, and J. Rossignac, “Advections with significantly reduced dissipation and diffusion,” IEEE Trans. Vis. Comput. Graph, vol. 13, no. 1, pp. 135–144, 2007. DOI: 10.1109/TVCG.2007.3.
  • M. Mortezazadeh, and L. L. Wang, “A high-order backward forward sweep interpolating algorithm for semi-Lagrangian method,” Int. J. Numer. Methods Fluids, vol. 84, no. 10, pp. 584–597, 2017.
  • E. Carlini, M. Falcone, and R. Ferretti, “A time—adaptive semi—Lagrangian approximation to mean curvature motion,” in Numerical Mathematics and Advanced Applications. Berlin, Heidelberg: Springer, 2006, pp. 732–739
  • W. Boscheri, M. Dumbser and O. Zanotti, “High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes,” J. Comput. Phys., vol. 291, pp. 120–150, 2015. DOI: 10.1016/j.jcp.2015.02.052.
  • S. E. Minkoff and N. M. Kridler, “A comparison of adaptive time stepping methods for coupled flow and deformation modeling,” Appl. Math. Model., vol. 30, no. 9, pp. 993–1009, 2006. DOI: 10.1016/j.apm.2005.08.002.
  • M. J. Gander, and L. Halpern, Techniques for Locally Adaptive Time Stepping Developed over the Last Two Decades. Berlin, Heidelberg: Springer, 2013, pp. 377–385
  • H. Gough, A. L. Gaitonde, and D. P. Jones, “A dual-time central-difference interface-capturing finite volume scheme applied to cavitation modelling,” Int. J. Numer. Methods Fluids, vol. 66, no. 4, pp. 452–485, 2011. DOI: 10.1002/fld.2265.
  • T. Fouquet, P. Joly, and F. Collino, “A conservative space-time mesh refinement method for the 1-D wave equation. Part i: construction,” Numer. Math., vol. 95, no. 2, pp. 197–221, 2003. DOI: 10.1007/s00211-002-0446-5.
  • A. Arnone, M.-S. Liou, and L. A. Povinelli, “Multigrid time-accurate integration of Navier-Stokes equations,” paper presented at 11th Computational Fluid Dynamics Conference. National Aeronautics and Space Administration, 1993.
  • A. J. Time, “Dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings,” paper presented at 10th Computational Fluid Dynamics Conference. 1991.
  • J. Rice, “Split Runge-Kutta methods for simultaneous equations,” J. Res. Natl. Inst., vol. 64B, no. 3, pp. 151–170, 1960.
  • M. Berger, “Stability of interfaces with mesh refinement,” Math. Comput., vol. 45, no. 172, pp. 301–318, 1985.
  • M. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential equations,” J. Comput. Phys., vol. 53, no. 3, pp. 484–512, 1984.
  • K. Eriksson, C. Johnson, A. Logg, K. Eriksson, C. Johnson, and A. Logg, “Adaptive computational methods for parabolic problems,” in Encyclopedia of Computational Mechanics. Chichester, UK: John Wiley & Sons, Ltd, 2004.
  • G. W. Stewart, Afternotes on numerical analysis. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1996.
  • F. Xiao, and T. Yabe, “Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation,” J. Comput. Phys. vol. 170, pp. 498–522, 2001.
  • L. L. Takacs, and L. L. Takacs, “A two-step scheme for the advection equation with minimized dissipation and dispersion errors,” Mon. Weather Rev., vol. 113, no. 6, pp. 1050–1065, 1985.
  • A. G. Malan, R. W. Lewis, and P. Nithiarasu, “An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part II. Application,” Int. J. Numer. Methods Eng., vol. 54, no. 5, pp. 715–729, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.