Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 5
178
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Heat conduction analysis for irregular functionally graded material geometries using the meshless weighted least-square method with temperature-dependent material properties

, &
Pages 312-324 | Received 17 Mar 2019, Accepted 31 May 2019, Published online: 17 Jun 2019

References

  • J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” J. Thermal Stresses, vol. 21, no. 6, pp. 593–626, 1998. DOI:10.1080/01495739808956165.
  • H. V. Tung, “Nonlinear thermomechanical stability of shear deformable FGM shallow spherical shells resting on elastic foundations with temperature dependent properties,” Compos. Struct., vol. 114, pp. 107–116, 2014. DOI:10.1016/j.compstruct.2014.04.004.
  • H. Bagheri, Y. Kiani, and M. R. Eslami, “Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation,” Comput. Math. Appl., vol. 75, no. 5, pp. 1566–1581, 2018. DOI:10.1016/j.camwa.2017.11.021.
  • V. N. V. Do and C.-H. Lee, “Thermal buckling analyses of FGM sandwich plates using the improved radial point interpolation mesh-free method,” Compos. Struct., vol. 177, pp. 171–186, 2017. DOI:10.1016/j.compstruct.2017.06.054.
  • H.-S. Shen, “Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties,” Int. J. Mech. Sci., vol. 49, no. 4, pp. 466–478, 2007. DOI:10.1016/j.ijmecsci.2006.09.011.
  • A. Moosaie and H. Panahi-Kalus, “Thermal stresses in an incompressible FGM spherical shell with temperature-dependent material properties,” Thin Wall. Struct., vol. 120, pp. 215–224, 2017. DOI:10.1016/j.tws.2017.09.005.
  • Y. Ootao and M. Ishihara, “Transient thermal stress problem of a functionally graded magneto-electro-thermoelastic hollow cylinder due to a uniform surface heating,” J. Thermal Stresses, vol. 35, no. 6, pp. 517–533, 2012. DOI:10.1080/01495739.2012.674781.
  • M. D. Demirbas, “Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity,” Compos. Part B, vol. 131, pp. 100–124, 2017. DOI:10.1016/j.compositesb.2017.08.005.
  • I. A. Abbas, “Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties,” Meccanica, vol. 49, no. 7, pp. 1697–1708, 2014. DOI:10.1007/s11012-014-9948-3.
  • K. Yang, H.-F. Peng, J. Wang, C.-H. Xing, and X.-W. Gao, “Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity,” Int. J. Heat Mass Transf., vol. 108, pp. 1551–1559, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.01.030.
  • K. Yang, J. Wang, J.-M. Du, H.-F. Peng, and X.-W. Gao, “Radial integration boundary element method for nonlinear heat conduction problems with temperature-dependent conductivity,” Int. J. Heat Mass Transf., vol. 104, pp. 1145–1151, 2017. DOI:10.1016/j.ijheatmasstransfer.2016.09.015.
  • K. Yang, W-z Feng, J. Wang, and X-w Gao, “RIBEM for 2D and 3D nonlinear heat conduction with temperature dependent conductivity,” Eng. Anal. Boundary Elements, vol. 87, pp. 1–8, 2018. DOI:10.1016/j.enganabound.2017.11.001.
  • M. Cui, B. B. Xu, W. Z. Feng, Y. W. Zhang, X. W. Gao, and H. F. Peng, “A radial integration boundary element method for solving transient heat conduction problems with heat sources and variable thermal conductivity,” Numer. Heat Transf. Part B, vol. 73, no. 1, pp. 1–18, 2018. DOI:10.1080/10407790.2017.1420319.
  • A. Karageorghis and D. Lesnic, “Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions,” Comput. Methods Appl. Mech. Eng., vol. 197, no. 33-40, pp. 3122–3137, 2008. DOI:10.1016/j.cma.2008.02.011.
  • A. Karageorghis and D. Lesnic, “The method of fundamental solutions for steady-state heat conduction in nonlinear materials,” Commun. Comput. Phys., vol. 4, pp. 417–421, 2008.
  • S. Jafari Mehrabadi and B. Sobhani Aragh, “On the thermal analysis of 2-D temperature-dependent functionally graded open cylindrical shells,” Compos. Struct., vol. 96, pp. 773–785, 2013. DOI:10.1016/j.compstruct.2012.09.036.
  • M. Sobhy, “Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations,” Int. J. Appl. Mech., vol. 07, no. 06, pp. 1550082, 2015. DOI:10.1142/S1758825115500829.
  • M. Mierzwiczak, W. Chen, and Z.-J. Fu, “The singular boundary method for steady-state nonlinear heat conduction problem with temperature-dependent thermal conductivity,” Int. J. Heat Mass Transf., vol. 91, pp. 205–217, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.07.051.
  • K. R. Bagnall, Y. S. Muzychka, and E. N. Wang, “Application of the Kirchhoff transform to thermal spreading problems with convection boundary conditions,” IEEE Trans. Compon. Packag. Manufact. Technol., vol. 4, no. 3, pp. 408–420, 2014. DOI:10.1109/TCPMT.2013.2292584.
  • A. Khosravifard, M. R. Hematiyan, and L. Marin, “Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method,” Appl. Math. Modelling, vol. 35, no. 9, pp. 4157–4174, 2011. DOI:10.1016/j.apm.2011.02.039.
  • A. Singh, I. V. Singh, and R. Prakash, “Meshless analysis of unsteady-state heat transfer in semi-infinite solid with temperature-dependent thermal conductivity,” Int. Commun. Heat Mass Transfer, vol. 33, no. 2, pp. 231–239, 2006. DOI:10.1016/j.icheatmasstransfer.2005.10.008.
  • A. Singh, I. V. Singh, R. Prakash, “Numerical solution of temperature-dependent thermal conductivity problems using a meshless method,” Numer. Heat Transf. Part A, vol. 50, no. 2, pp. 125–145, 2006. DOI:10.1080/10407780500507111.
  • M. H. Shojaeefard and A. Najibi, “Nonlinear transient heat conduction analysis of hollow thick temperature-dependent 2D-FGM cylinders with finite length using numerical method,” J. Mech. Sci. Technol., vol. 28, no. 9, pp. 3825–3835, 2014. DOI:10.1007/s12206-014-0846-3.
  • D.-S. Yang et al., “Calculating the multi-domain transient heat conduction with heat source problem by virtual boundary meshfree Galerkin method,” Numer. Heat Transf. Part B, vol. 74, no. 1, pp. 465–479, 2018. DOI:10.1080/10407790.2018.1505091.
  • M. Shariyat, M. Khaghani, and S. M. H. Lavasani, “Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties,” Eur. J. Mech. A Solids, vol. 29, no. 3, pp. 378–391, 2010. DOI:10.1016/j.euromechsol.2009.10.007.
  • F. Mohebbi and M. Sellier, “Identification of space- and temperature-dependent heat transfer coefficient,” Int. J. Thermal Sci., vol. 128, pp. 28–37, 2018. DOI:10.1016/j.ijthermalsci.2018.02.007.
  • N. Afrin, Z. C. Feng, Y. Zhang, and J. K. Chen, “Inverse estimation of front surface temperature of a locally heated plate with temperature-dependent conductivity via Kirchhoff transformation,” Int. J. Thermal Sci., vol. 69, pp. 53–60, 2013. DOI:10.1016/j.ijthermalsci.2013.02.004.
  • D. G. Yang, X. X. Yue, and Q. B. Yang, “Virtual boundary element method in conjunction with conjugate gradient algorithm for three-dimensional inverse heat conduction problems,” Numer. Heat Transf. Part B, vol. 72, no. 6, pp. 421–430, 2017. DOI:10.1080/10407790.2017.1409525.
  • Y. Liu, X. Zhang, and M. W. Lu, “Meshless least-squares method for solving the steady-state heat conduction equation,” Tsinghua Sci. Technol., vol. 10, no. 1, pp. 61–66, 2005. DOI:10.1016/S1007-0214(05)70010-9.
  • Y. Liu, X. Zhang, and M. W. Lu, “A meshless method based on least-squares approach for steady-and unsteady-state heat conduction problems,” Numer. Heat Transf. Part B, vol. 47, no. 3, pp. 257–275, 2005. DOI:10.1080/10407790590901648.
  • H. M. Zhou, Z. G. Liu, and B. H. Lu, “Heat conduction analysis of heterogeneous objects based on multi-color distance field,” Mater. Des., vol. 31, pp. 3331–3338, 2010. DOI:10.1016/j.matdes.2010.02.001.
  • H. M. Zhou, W. H. Zhou, G. Qin, Z. Y. Wang, and P. M. Ming, “Transient heat conduction analysis for distance-field-based irregular geometries using the meshless weighted least-square method,” Numer. Heat Transf. Part B, vol. 71, no. 5, pp. 456–466, 2017. DOI:10.1080/10407790.2016.1265332.
  • G. Kirchhoff, Vorlesungen Uber die Theorie der Varme. Leipzig, Germany: Teubner, 1894, pp. 1–13.
  • Z.-J. Fu, W. Chen, and Q. Qin, “Three boundary meshless methods for heat conduction analysis in nonlinear FGMs with Kirchhoff and Laplace transformation,” Adv. Appl. Math. Mech., vol. 4, pp. 519–542, 2012. DOI:10.4208/aamm.10-m1170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.