Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 5
96
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A Lax–Wendroff-IMPES scheme for a two-phase flow in porous media using interior penalty discontinuous Galerkin method

, &
Pages 325-346 | Received 06 Mar 2019, Accepted 31 May 2019, Published online: 17 Jun 2019

References

  • M. Jamei and H. Ghafouri, “An efficient discontinuous Galerkin method for two-phase flow modeling by conservative velocity projection,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 1, pp. 63–84, 2016. DOI:10.1108/HFF-08-2014-0247.
  • Y.-X. Ding, A.-F. Shi, H.-S. Luo, and X.-H. Wang, “Adaptive mesh refinement for non-isothermal multiphase flows in heterogeneous porous media comprising different rock types with tensor permeability,” Numer. Heat Transf., Part A Appl., vol. 69, no. 1, pp. 31–50, 2016. DOI:10.1080/10407782.2015.1023081.
  • M. Ahmadpour, M. Siavashi, and M. Moghimi, “Numerical simulation of two-phase mass transport in three-dimensional naturally fractured reservoirs using discrete streamlines,” Numer. Heat Transf., Part A Appl.,, vol. 73, no. 7, pp. 482–500, 2018. DOI:10.1080/10407782.2018.1447200.
  • A. Hadad, J. Bensabat, and H. Rubin, “Simulation of immiscible multiphase flow in porous media: a focus on the capillary fringe of oil-contaminated aquifers,” Transp. Porous Media, vol. 22, no. 3, pp. 245–269, 1996. DOI:10.1007/BF00161626.
  • A. Riaz and H. A. Tchelepi, “Numerical simulation of immiscible two-phase flow in porous media,” Phys. Fluids, vol. 18, no. 1, pp. 014104, 2006. DOI:10.1063/1.2166388.
  • B. Amaziane and M. Jurak, “A new formulation of immiscible compressible two-phase flow in porous media,” CR Mécanique, vol. 336, no. 7, pp. 600–605, 2008. DOI:10.1016/j.crme.2008.04.008.
  • B. Amaziane, L. Pankratov, and A. Piatnitski, “An improved homogenization result for immiscible compressible two-phase flow in porous media,” NHM, vol. 12, no. 1, pp. 147–171, 2017.
  • T. Arbogast, M. Juntunen, J. Pool, and M. F. Wheeler, “A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H (div) velocityand continuous capillary pressure,” Comput. Geosci., vol. 17, no. 6, pp. 1055–1078, 2013. DOI:10.1007/s10596-013-9374-y.
  • P. Bastian and B. Riviere, “Discontinuous Galerkin methods for two-phase flow in porous media,” Technical Reports of the IWR (SFB 359) of the Universität Heidelberg, 2004.
  • J. Kou and S. Sun, “A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation,” Comput. Fluids, vol. 39, no. 10, pp. 1923–1931, 2010. DOI:10.1016/j.compfluid.2010.06.022.
  • T.-H. Shieh and M.-C. Chen, “Study of high-order-accurate limiters for time-dependent contact discontinuity and shock capturing,” Numer. Heat Transf., Part B Fundam., vol. 70, no. 1, pp. 56–79, 2016. DOI:10.1080/10407790.2015.1052296.
  • C.-W. Shu, “Total-variation-diminishing time discretizations,” SIAM J. Sci. Stat. Comput., vol. 9, no. 6, pp. 1073–1084, 1988. DOI:10.1137/0909073.
  • S. Gottlieb, C.-W. Shu, and E. Tadmor, “Strong stability-preserving high-order time discretization methods,” SIAM Rev., vol. 43, no. 1, pp. 89–112, 2001. DOI:10.1137/S003614450036757X.
  • S. Gottlieb, “On high order strong stability preserving Runge–Kutta and multi step time discretizations,” J. Sci. Comput., vol. 25, no. 1, pp. 105–128, 2005. DOI:10.1007/s10915-004-4635-5.
  • S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, “High order strong stability preserving time discretizations,” J. Sci. Comput., vol. 38, no. 3, pp. 251–289, 2009. DOI:10.1007/s10915-008-9239-z.
  • S. Lee and M. F. Wheeler, “Enriched Galerkin methods for two-phase flow in porous media with capillary pressure,” Comput. Phys., vol. 367, pp. 65–86, 2018. DOI:10.1016/j.jcp.2018.03.031.
  • M. S. Fabien, M. G. Knepley, and B. M. Riviere, “A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media,” Numer. Method Eng., vol. 116, no. 3, pp. 161–177, 2018. DOI:10.1002/nme.5919.
  • R. Bürger, S. K. Kenettinkara, and D. Zorío, “Approximate Lax–Wendroff discontinuous Galerkin methods for hyperbolic conservation laws,” Comput. Math. Appl., vol. 74, no. 6, pp. 1288–1310, 2017. DOI:10.1016/j.camwa.2017.06.019.
  • J. Donea, S. Giuliani, H. Laval, and L. Quartapelle, “Time-accurate solution of advection-diffusion problems by finite elements,” Comput. Methods Appl. Mech. Eng., vol. 45, no. 1–3, pp. 123–145, 1984. DOI:10.1016/0045-7825(84)90153-1.
  • J. Donea, “A Taylor–Galerkin method for convective transport problems,” Int. J. Numer. Methods Eng., vol. 20, no. 1, pp. 101–119, 1984. DOI:10.1002/nme.1620200108.
  • J. Donea, L. Quartapelle, and V. Selmin, “An analysis of time discretization in the finite element solution of hyperbolic problems,” Comput. Phys., vol. 70, no. 2, pp. 463–499, 1987. DOI:10.1016/0021-9991(87)90191-4.
  • J. Donea, “Generalized Galerkin methods for convection dominated transport phenomena,” Appl. Mech. Rev., vol. 44, no. 5, pp. 205–214, 1991. DOI:10.1115/1.3119502.
  • W. Klieber and B. Riviere, “Adaptive simulations of two-phase flow by discontinuous Galerkin methods,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 1-3, pp. 404–419, 2006. DOI:10.1016/j.cma.2006.05.007.
  • R. Brooks and T. Corey, Hydraulic Properties of Porous Media. Fort Collins, Colorado: Colorado State University, 1964.
  • M. T. Van Genuchten and D. Nielsen, “On describing and predicting the hydraulic properties of unsaturated soils,” Ann. Geophys., vol. 3, no. 5, pp. 615–628, 1985.
  • R. Helmig, Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Berlin: Springer-Verlag, 1997.
  • O. J. Eslinger, “Discontinuous galerkin finite element methods applied to two-phase, air-water flow problems,” Ph.D. dissertation, University of Texas at Austin, 2005.
  • A. Ern, A. F. Stephansen, and P. Zunino, “A discontinuous Galerkin method with weighted averages for advection -diffusion equations with locally small and anisotropic diffusivity,” IMA Journal of Numerical Analysis, 2008.
  • D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. vol. 69: Heidelberg: Springer, 2011.
  • B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: theory and Implementation. Society for Industrial and Applied Mathematics. 2008.
  • M. Jamei, and H. Ghafouri, “A novel discontinuous Galerkin model for two-phase flow in porous media using an improved IMPES method,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 1, pp. 284–306, 2016. DOI:10.1108/HFF-01-2015-0008.
  • R. C. Kirby, “Algorithm 839: FIAT, a new paradigm for computing finite element basis functions,” ACM Trans. Math. Software (TOMS), vol. 30, no. 4, pp. 502–516, 2004. DOI:10.1145/1039813.1039820.
  • B. Roig, “One-step Taylor–Galerkin methods for convection–diffusion problems,” J. Comput. Appl. Math., vol. 204, no. 1, pp. 95–101, 2007. DOI:10.1016/j.cam.2006.04.031.
  • E. J. Kubatko, C. Dawson, and J. J. Westerink, “Time step restrictions for Runge–Kutta discontinuous Galerkin methods on triangular grids,” Comput. Phys., vol. 227, no. 23, pp. 9697–9710, 2008. DOI:10.1016/j.jcp.2008.07.026.
  • T. Toulorge and W. Desmet, “CFL conditions for Runge–Kutta discontinuous Galerkin methods on triangular grids,” Comput. Phys., vol. 230, no. 12, pp. 4657–4678, 2011. DOI:10.1016/j.jcp.2011.02.040.
  • H. Hoteit, P. Ackerer, R. Mosé, J. Erhel, and B. Philippe, “New two‐dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes,” Int. J. Numer. Methods Eng., vol. 61, no. 14, pp. 2566–2593, 2004. DOI:10.1002/nme.1172.
  • H. Hoteit and A. Firoozabadi, “Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures,” Adv. Water Resour., vol. 31, no. 1, pp. 56–73, 2008. DOI:10.1016/j.advwatres.2007.06.006.
  • G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows through Porous Media. Amsterdam:North Holland, 1986.
  • S. E. Buckley and M. Leverett, “Mechanism of fluid displacement in sands,” Trans. AIME, vol. 146, no. 1, pp. 107–116, 1942. DOI:10.2118/942107-G.
  • A. Burri, “Implementation of a multiphase flow simulator using a fully upwind galerkin method within the CSP multiphysics toolkit,” Unpublished Diploma Thesis, Eidgenössische Technische Hochschule Zürich, Switzerland, 2004.
  • K. Pruess, “TOUGH2-A general-purpose numerical simulator for multiphase fluid and heat flow,” United States. 1991.
  • S. Geiger Boschung, “Numerical simulations of the hydrodynamics and thermodynamics of NaCl-H2O fluids,” Ph. D. dissertation, ETH Zurich, 2004.
  • D. B. McWhorter and D. K. Sunada, “Exact integral solutions for two‐phase flow,” Water Resour. Res., vol. 26, no. 3, pp. 399–413, 1990. DOI:10.1029/WR026i003p00399.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.