Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 1
251
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

A hybrid strategy for solving radiation-conduction in irregular geometries filled with gray semitransparent medium using Monte Carlo method combined with blocked-off and embedded boundary treatments

, , &
Pages 22-41 | Received 02 Mar 2019, Accepted 05 Nov 2019, Published online: 19 Nov 2019

References

  • Y. J. Sun and X. B. Zhang, “Analysis of transient conduction and radiation problems using the lattice Boltzmann and discrete ordinates methods,” Numer. Heat Transfer A Appl., vol. 68, no. 6, pp. 619–637, 2015.
  • Y. J. Sun and X. B. Zhang, “Analysis of transient conduction and radiation problems using lattice Boltzmann and finite volume methods,” Int. J. Heat Mass Transfer, vol. 97, pp. 611–617, 2016.
  • S. C. Mishra, H. Poonia, A. K. Das, P. Asinari, and R. Borchiellini, “Analysis of conduction-radiation heat transfer in a 2D enclosure using the lattice Boltzmann method,” Numer. Heat Transfer A Appl., vol. 66, no. 6, pp. 669–688, 2014. DOI: 10.1080/10407782.2014.894376.
  • H. Amiri, S. H. Mansouri, and A. Safavinejad, “Combined conductive and radiative heat transfer in an anisotropic scattering participating medium with irregular geometries,” Int. J. Therm. Sci., vol. 49, no. 3, pp. 492–503, 2010. DOI: 10.1016/j.ijthermalsci.2009.10.005.
  • G. N. Lygidakis and I. K. Nikolos, “Assessment of different spatial/angular agglomeration multigrid schemes for the acceleration of FVM radiative heat transfer computations,” Numer. Heat Transfer B Fundam., vol. 69, no. 5, pp. 389–412, 2016. DOI: 10.1080/10407790.2016.1138701.
  • D. Y. Byun, S. W. Baek, and M. Y. Kim, “Thermal radiation in a discretely heated irregular geometry using the Monte-Carlo, finite volume, and modified discrete ordinates interpolation method,” Numer. Heat Transfer A Appl., vol. 37, pp. 1–18, 2000.
  • S. W. Baek, D. Y. Byun, and S. J. Kang, “The combined Monte-Carlo and finite-volume method for radiation in a two-dimensional irregular geometry,” Int. J. Heat Mass Transfer, vol. 43, no. 13, pp. 2337–2344, 2000. DOI: 10.1016/S0017-9310(99)00288-4.
  • Z. M. Hu, H. Tian, B. W. Li, Y. S. Yin, W. Zhang, and M. Ruan, “The performances of the discrete ordinates-collocation spectral method for the three-dimensional radiative transfer equation,” Numer. Heat Transfer A Appl., vol. 71, no. 8, pp. 867–880, 2017. DOI: 10.1080/10407782.2017.1309216.
  • S. Cunsolo et al., “Monte Carlo determination of radiative properties of metal foams-Comparison between idealized and real cell structures,” Int. J. Therm. Sci., vol. 87, pp. 94–102, 2015. DOI: 10.1016/j.ijthermalsci.2014.08.006.
  • X. L. Xia, Y. Li, C. Sun, Q. Ai, and H. P. Tan, “Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams,” J. Quant. Spectrosc. Radiat. Transfer, vol. 212, pp. 128–138, 2018. DOI: 10.1016/j.jqsrt.2018.04.001.
  • S. Cunsolo, R. Coquard, D. Baillis, W. K. S. Chiu, and N. Bianco, “Radiative properties of irregular open cell solid foams,” Int. J. Therm. Sci., vol. 117, pp. 77–89, 2017. DOI: 10.1016/j.ijthermalsci.2017.03.007.
  • L. M. Ruan, H. P. Tan, and Y. Y. Yan, “A Monte Carlo (MC) method applied to the medium with nongray absorbing-emitting-anisotropic scattering particles and gray approximation,” Numer. Heat Transfer A Appl., vol. 42, no. 3, pp. 253–268, 2002. DOI: 10.1080/10407780290059530.
  • G. Parthasarathy, H. S. Lee, J. C. Chai, and S. V. Patankar, “Monte Carlo solutions for radiative heat transfer in irregular two-dimensional geometries,” ASME J. Heat Transfer, vol. 117, no. 3, pp. 792–794, 1995. DOI: 10.1115/1.2822653.
  • C. H. Wang, Y. Zhang, H. L. Yi, and H. P. Tan, “Transient radiative transfer in two-dimensional graded index medium by Monte Carlo method combined with the time shift and superposition principle,” Numer. Heat Transfer A Appl., vol. 69, no. 6, pp. 574–588, 2016. DOI: 10.1080/10407782.2015.1090236.
  • S. Veiseh and A. Hakkaki-Fard, “Numerical modeling of combined radiation and conduction heat transfer in mineral wool insulations,” Heat Transfer Eng., vol. 30, no. 6, pp. 477–486, 2009. DOI: 10.1080/01457630802529065.
  • X. Chen, X. L. Xia, C. Sun, and X. W. Yan, “Transient thermal analysis of the coupled radiative and convective heat transfer in a porous filled tube exchanger at high temperatures,” Int. J. Heat Mass Transfer, vol. 108, pp. 2472–2480, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.089.
  • J. Liu, H. M. Shang, and Y. S. Chen, “Development of an unstructured radiation model applicable for two-dimensional planar, axisymmetric, and three-dimensional geometries,” J. Quant. Spectrosc. Radiat. Transfer, vol. 66, no. 1, pp. 17–33, 2000. DOI: 10.1016/S0022-4073(99)00162-4.
  • M. Y. Kim, S. W. Baek, and J. H. Park, “Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles,” Numer. Heat Transfer B Fundam., vol. 39, pp. 617–635, 2001.
  • M. Y. Kim, S. W. Baek, and I. S. Park, “Evaluation of the finite-volume solutions of radiative heat transfer in a complex two-dimensional enclosure with unstructured polygonal meshes,” Numer. Heat Transfer B Fundam., vol. 54, no. 2, pp. 116–137, 2008. DOI: 10.1080/10407790802154215.
  • F. Asllanaj, V. Feldheim, and P. Lybaert, “Solution of radiative heat transfer in 2-D geometries by a modified finite-volume method based on a cell vertex scheme using unstructured triangular meshes,” Numer. Heat Transfer B-Fundam., vol. 51, no. 2, pp. 97–119, 2007. DOI: 10.1080/10407790600762805.
  • H. Grissa, F. Askri, M. B. Salah, and S. B. Nasrallah, “Prediction of radiative heat transfer in 3D complex geometries using the unstructured control volume finite element method,” J. Quant. Spectrosc. Radiat. Transfer, vol. 111, no. 1, pp. 144–154, 2010. DOI: 10.1016/j.jqsrt.2009.07.006.
  • C. Aghanajafi and A. Abjadpour, “Discrete ordinates method applied to radiative transfer equation in complex geometries meshed by structured and unstructured grids,” J. Braz. Soc. Mech. Sci. Eng., vol. 38, no. 3, pp. 1007–1019, 2016. DOI: 10.1007/s40430-015-0397-2.
  • C. H. Wang and H. Y. Liu, “Discontinuous Galerkin finite element method for radiative heat transfer in two-dimensional media with inner obstacles,” Numer. Heat Transfer A Appl., vol. 73, no. 11, pp. 806–822, 2018. DOI: 10.1080/10407782.2018.1460152.
  • C. H. Wang, Y. Y. Feng, K. Yue, and X. X. Zhang, “Discontinuous finite element method for combined radiation-conduction heat transfer in participating media,” Int. Commun. Heat Mass, vol. 108, pp. 104287, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104287.
  • F. Bouzgarrou, F. Askri, H. B. Ali, and S. B. Nasrallah, “Analyses of unsteady conduction-radiation heat transfer using unstructured Lattice Boltzmann method,” Int. J. Therm. Sci., vol. 116, pp. 287–309, 2017. DOI: 10.1016/j.ijthermalsci.2017.03.002.
  • J. C. Chai, H. S. Lee, and S. V. Patankar, “Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation heat transfer procedure,” Numer. Heat Transfer B Fundam., vol. 26, no. 2, pp. 225–235, 1994. DOI: 10.1080/10407799408914927.
  • L. H. Howell and V. E. Beckner, “Discrete ordinates algorithm for domains with embedded boundaries,” J. Thermophys. Heat Transfer, vol. 11, no. 4, pp. 549–555, 1997. DOI: 10.2514/2.6297.
  • D. Y. Byun, S. W. Baek, and M. Y. Kim, “Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments,” Numer. Heat Transfer A Appl., vol. 43, pp. 807–825, 2003.
  • H. Amiri, S. H. Mansouri, and P. J. Coelho, “Application of the modified discrete ordinates method with the concept of blocked-off region to irregular geometries,” Int. J. Therm. Sci., vol. 50, no. 4, pp. 515–524, 2011. DOI: 10.1016/j.ijthermalsci.2010.10.012.
  • M. Zabihi, K. Lari, and H. Amiri, “Comparison of the blocked-off and embedded boundary methods in radiative heat transfer problems in 2D complex enclosures at radiative equilibrium,” J. Mech. Sci. Technol., vol. 31, no. 7, pp. 3539–3551, 2017. DOI: 10.1007/s12206-017-0343-6.
  • P. Talukdar, “Discrete transfer method with the concept of blocked-off region for irregular geometries,” J. Quant. Spectrosc. Radiat. Transfer, vol. 98, no. 2, pp. 238–248, 2006. DOI: 10.1016/j.jqsrt.2005.05.087.
  • P. Talukdar, “Radiative heat transfer for irregular geometries with the collapsed dimension method,” Int. J. Therm. Sci., vol. 45, no. 2, pp. 103–109, 2006. DOI: 10.1016/j.ijthermalsci.2005.06.006.
  • H. Amiri, S. H. Mansouri, and P. J. Coelho, “Application of modified discrete ordinates method to combined conduction-radiation heat transfer problems in irregular geometries,” Int. J. Numer. Methods Heat Fluid Flow, vol. 22, no. 7, pp. 862–879, 2012. DOI: 10.1108/09615531211255752.
  • K. Lari and S. A. G. Nassab, “Analysis of combined radiative and conductive heat transfer in three-dimensional complex geometries using blocked-off method,” IJST-T Mech. Eng., vol. 35, pp. 107–119, 2011.
  • K. Lari and S. A. G. Nassab, “Modeling of the conjugate radiation and conduction problem in a 3-D complex multi-burner furnace,” Therm. Sci., vol. 16, no. 4, pp. 1187–1200, 2012. DOI: 10.2298/TSCI110121034L.
  • M. Zare and S. A. G. Nassab, “Combined radiative-conductive heat transfer in two-dimensional complex geometries with variable thermal conductivity,” IJST-T Mech. Eng., vol. 38, pp. 275–288, 2014.
  • M. Zare and S. A. G. Nassab, “Transient combined radiative-conductive heat transfer in two-dimensional complex geometries with variable gas properties, Iran,” J. Sci. Technol. Trans. Mech. Eng., vol. 40, no. 1, pp. 31–42, 2016. DOI: 10.1007/s40997-016-0008-6.
  • A. Mukherjee, S. C. Mishra, and P. K. Mondal, “Numerical analysis of combined-mode dual-phase-lag heat conduction and radiation in an absorbing, emitting, and scattering cylindrical medium,” Numer. Heat Transfer A Appl., vol. 71, no. 7, pp. 769–788, 2017. DOI: 10.1080/10407782.2017.1308708.
  • M. M. Keshtkar and B. Amiri, “Numerical simulation of radiative-conductive heat transfer in an enclosure with an isotherm obstacle,” Heat Transfer Eng., vol. 39, pp. 72–83, 2018. DOI: 10.1080/01457632.2017.1280293.
  • M. Zabihi, K. Lari, and H. Amiri, “Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method,” J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 7, pp. 2847–2864, 2017. DOI: 10.1007/s40430-017-0729-5.
  • P. Talukdar, M. A. A. Mendes, R. K. Parida, D. Trimis, and S. Ray, “Modelling of conduction-radiation in a porous medium with blocked-off region approach,” Int. J. Therm. Sci., vol. 72, pp. 102–114, 2013. DOI: 10.1016/j.ijthermalsci.2013.04.027.
  • M. A. A. Mendes, P. Talukdar, S. Ray, and D. Trimis, “Detailed and simplified models for evaluation of effective thermal conductivity of open-cell porous foams at high temperatures in presence of thermal radiation,” Int. J. Heat Mass Transfer, vol. 68, pp. 612–624, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.071.
  • Y. J. Sun and X. B. Zhang, “A hybrid strategy of lattice Boltzmann method and finite volume method for combined conduction and radiation in irregular geometry,” Int. J. Heat Mass Transfer, vol. 121, pp. 1039–1054, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.067.
  • H. F. Sun, F. X. Sun, and X. L. Xia, “Bidirectional weighted Monte Carlo method for radiation transfer in the participating media,” Numer. Heat Transfer B Fundam., vol. 71, no. 2, pp. 202–215, 2017. DOI: 10.1080/10407790.2016.1265316.
  • L. H. Liu and X. Xu, “Monte Carlo ray-tracing simulation for radiative heat transfer in turbulent fluctuating media under the optically thin fluctuation approximation,” J. Quant. Spectrosc. Radiat. Transfer, vol. 84, no. 3, pp. 349–355, 2004. DOI: 10.1016/S0022-4073(03)00185-7.
  • H. Dammertz and A. Keller, “Improving ray tracing precision by object space intersection computation,” IEEE Symposium on Interactive Ray Tracing, Salt Lake City, UT, USA, pp. 25–31, 2006.
  • S. C. Mishra, A. Lankadasu, and K. N. Beronov, “Application of the Lattice Boltzmann method for solving the energy equation of a 2-D transient conduction-radiation problem,” Int. J. Heat Mass Transfer, vol. 48, no. 17, pp. 3648–3659, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.041.
  • C. Fan, X. L. Li, X. L. Xia, and C. Sun, “An unstructured Monte Carlo ray-tracing method for solving radiative heat transfer in 3D gray semitransparent medium,” J. Quant. Spectrosc. Radiat. Transfer, vol. 225, pp. 110–118, 2019. DOI: 10.1016/j.jqsrt.2018.12.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.