Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 3
140
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of radial injection on heat transfer of a Taylor–Couette–Poiseuille flow

, , &
Pages 271-285 | Received 19 Aug 2019, Accepted 26 Nov 2019, Published online: 21 Jan 2020

References

  • G. Taylor, “Stability of a viscous liquid contained between two rotating cylinders,” Phil. Trans. R. Soc. Lond. A, vol. 223, nos. 605–615, pp. 289–343, January, 1923.
  • C. Gazley, Jr, “Heat-transfer characteristics of rotational and axial flow between concentric cylinders,” Trans. ASME, vol. 1, pp. 79–90, 1958.
  • K. M. Becker and J. Kaye, “Measurements of diabatic flow in an annulus with an inner rotating cylinder,” Trans. ASME, J. Heat Transf., vol. 84, no. 2, pp. 97–104, 1962. DOI: 10.1115/1.3684335.
  • F. Tachibana and S. Fukui, “Convective heat transfer of the rotational and axial flow between two concentric cylinders,” Bulletin JSME, vol. 7, no. 26, pp. 385–391, 1964. DOI: 10.1299/jsme1958.7.385.
  • K. Ball, B. Farouk, and V. Dixit, “An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder,” Int. J. Heat Mass Transf., vol. 32, no. 8, pp. 1517–1527, 1989. DOI: 10.1016/0017-9310(89)90073-2.
  • S.-C. Tzeng, “Heat transfer in a small gap between co-axial rotating cylinders,” Int. Commun. Heat Mass Transf., vol. 33, no. 6, pp. 737–743, 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.012.
  • M. King and M. Wilson, “Numerical simulations of convective heat transfer in Rayleigh-Benard convection and a rotating annulus,” Numer. Heat Transf. Part A: Appl., vol. 48, no. 6, pp. 529–545, 2005. DOI: 10.1080/10407780590967890.
  • S. Goldstein, “The stability of viscous fluid flow between rotating cylinders,” in Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge, UK: Cambridge University Press, 1937, pp. 41–61. DOI: 10.1017/S0305004100016777.
  • J. Kaye, “Modes of adiabatic and diabatic fluid flow in an annulus with an inner rotating cylinder,” Trans ASME, vol. 80, pp. 753–765, 1958.
  • T. Kuzay and C. Scott, “Turbulent heat transfer studies in annulus with inner cylinder rotation,” Trans. ASME, J. Heat Transf., vol. 99, no. 1, pp. 12–19, 1977. DOI: 10.1115/1.3450635.
  • D. Simmers and J. Coney, “A Reynolds analogy solution for the heat transfer characteristics of combined Taylor vortex and axial flows,” Int. J. Heat Mass Transf., vol. 22, no. 5, pp. 679–689, 1979. DOI: 10.1016/0017-9310(79)90116-9.
  • T. Hanagida and N. Kawasaki, “Pressure drop and heat-transfer characteristics of axial air flow through an annulus with a deep-slotted outer cylinder and a rotating inner cylinder (second report―heat-transfer characteristics), Heat transfer,” Jpn. Res., vol. 21, pp. 292–304, 1992.
  • P. R. Childs and A. Turner, “Heat transfer on the surface of a cylinder rotating in an annulus at high axial and rotational Reynolds numbers,” International Heat Transfer Conference Digital Library, Begel House Inc., 1994.
  • H. Pfitzer and H. Beer, “Heat transfer in an annulus between independently rotating tubes with turbulent axial flow,” Int. J. Heat Mass Transf., vol. 35, no. 3, pp. 623–633, 1992. DOI: 10.1016/0017-9310(92)90121-8.
  • S. Torii and W.-J. Yang, “Numerical study on turbulent flow and heat transfer in circular Couette flows,” Numer. Heat Transf. Part A Appl., vol. 26, no. 3, pp. 321–336, 1994. DOI: 10.1080/10407789408955995.
  • J. Naser, “Prediction of newtonian and non-newtonian flow through concentric annulus with centerbody rotation,” International Conference on CFS in Mineral and Metal Processing and Power Generation. Canberra, Australia: CSIRO, 1997.
  • M. Escudier and I. Gouldson, “Concentric annular flow with centerbody rotation of a Newtonian and a shear-thinning liquid,” Int. J. Heat Fluid Flow, vol. 16, no. 3, pp. 156–162, 1995. DOI: 10.1016/0142-727X(95)00012-F.
  • M.-I. Char and Y.-H. Hsu, “Numerical prediction of turbulent mixed convection in a concentric horizontal rotating annulus with low-Re two-equation models,” Int. J. Heat Mass Transf., vol. 41, no. 12, pp. 1633–1643, 1998. DOI: 10.1016/S0017-9310(97)00304-9.
  • S. Y. Chung and H. J. Sung, “Large-eddy simulation of turbulent flow in a concentric annulus with rotation of an inner cylinder,” Int. J. Heat Fluid Flow, vol. 26, no. 2, pp. 191–203, 2005. DOI: 10.1016/j.ijheatfluidflow.2004.08.006.
  • J. Nouri and J. Whitelaw, “Flow of Newtonian and non-Newtonian fluids in a concentric annulus with rotation of the inner cylinder,” Trans. ASME, J. Fluids Eng., vol. 116, no. 4, pp. 821–827, 1994. DOI: 10.1115/1.2911856.
  • J. S. Lee, X. Xu, and R. H. Pletcher, “Large eddy simulation of the effects of inner wall rotation on heat transfer in annular turbulent flow,” Numer. Heat Transf. Part A: Appl., vol. 46, no. 4, pp. 323–341, 2004. DOI: 10.1080/10407780490478416.
  • M. Kuosa, P. Sallinen, and J. Larjola, “Numerical and experimental modelling of gas flow and heat transfer in the air gap of an electric machine,” j. Thermal sci., vol. 13, no. 3, pp. 264, 2004. DOI: 10.1007/s11630-004-0041-4.
  • S. Poncet, S. Haddadi, and S. Viazzo, “Numerical modeling of fluid flow and heat transfer in a narrow Taylor–Couette–Poiseuille system,” int. j. Heat Fluid Flow, vol. 32, no. 1, pp. 128–144, 2011. DOI: 10.1016/j.ijheatfluidflow.2010.08.003.
  • S. Poncet, S. Viazzo, and R. Oguic, “Large eddy simulations of Taylor-Couette-Poiseuille flows in a narrow-gap system,” Physics Fluids, vol. 26, no. 10, pp. 105108, 2014. DOI: 10.1063/1.4899196.
  • R. Mayle, S. Hess, C. Hirsch, and J. Van Wolfersdorf, “Rotor-stator gap flow analysis and experiments,” IEEE Trans. Energy Convers., vol. 13, no. 2, pp. 101–110, 1998. DOI: 10.1109/60.678972.
  • N. Wilkinson and C. S. Dutcher, “Taylor-Couette flow with radial fluid injection,” Rev. Sci. Instrum., vol. 88, no. 8, pp. 083904, 2017. DOI: 10.1063/1.4997340.
  • J. D. Han, G. Y. Hong, L. Tang, and Y. P. Lu, “Numerical studies on the flow field of stator and air gap for large air-cooled turbo-generator,” Adv. Mater. Res., vol. 516–517, pp. 970–975, 2012. DOI: 10.4028/www.scientific.net/AMR.516-517.970.
  • N. Biswas, P. S. Mahapatra, and N. K. Manna, “Mixed convection heat transfer in a grooved channel with injection,” Numer. Heat Transf. Part A: Appl., vol. 68, no. 6, pp. 663–685, 2015. DOI: 10.1080/10407782.2014.994411.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Harlow, UK: Pearson Education, 2007.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.