Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 3
221
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Flow and heat transfer characteristics of droplet obliquely impact on a stationary liquid film

ORCID Icon, , &
Pages 228-241 | Received 28 Sep 2019, Accepted 26 Dec 2019, Published online: 21 Jan 2020

References

  • J. G. Bustamante, and S. Garimella, “Experimental assessment of flow distributors for falling-films over horizontal tube banks,” Int. J. Refrigeration, vol. 101, pp. 24–33, 2019. DOI: 10.1016/j.ijrefrig.2019.02.025.
  • A. S. Salman et al., “Experimental investigation of the impact of geometrical surface modification on spray cooling heat transfer performance in the non-boiling regime,” Int. J. Heat Mass Tran, vol. 133, pp. 330–340, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.058.
  • R. L. Vander Wal, G. M. Berger, and S. D. Mozes, “Droplets splashing upon films of the same fluid of various depths,” Exp. Fluids, vol. 40, no. 1, pp. 33–52, 2006. DOI: 10.1007/s00348-005-0044-2.
  • Y. Hou, P. Jie, and H. Wang, “Heat transfer mechanisms of single droplet impacting onto flowing film,” Int. J. Heat Mass Tran., vol. 132, pp. 952–960, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.006.
  • Y. Guo, L. Wei, G. Liang, and S. Shen, “Simulation of droplet impact on liquid film with CLSVOF,” Int. Commun. Heat Mass, vol. 53, pp. 26–33, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.02.006.
  • G. Liang, X. Mu, Y. Guo, and S. Shen, “Flow and heat transfer during a single drop impact on a liquid film,” Numer. Heat Tran. Part B: Fund., vol. 69, no. 6, pp. 575–582, 2016. DOI: 10.1080/10407790.2016.1173496.
  • F. Jiang, Y. Wang, J. Xiang, and Z. Liu, “A comprehensive computational fluid dynamics study of droplet‐film impact and heat transfer,” Chem. Eng. Technol., vol. 38, no. 9, pp. 1565–1573, 2015. DOI: 10.1002/ceat.201400255.
  • W. Hong, and Y. Wang, “A coupled level set and volume-of-fluid simulation for heat transfer of the double droplet impact on a spherical liquid film,” Numer. Heat Transf. Part B: Fund., vol. 71, no. 4, pp. 359–371, 2017. DOI: 10.1080/10407790.2017.1293960.
  • Y. Wang, X. Wang, T. Wang, and W. Yan, “Asymmetric heat transfer characteristics of a double droplet impact on a moving liquid film,” Int. J. Heat Mass Tran., vol. 126, pp. 649–659, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.161.
  • M. Cheng, and J. Lou, “A numerical study on splash of oblique drop impact on wet walls,” Comput. Fluids, vol. 115, pp. 11–24, 2015. DOI: 10.1016/j.compfluid.2015.03.019.
  • T. Okawa, T. Shiraishi, and T. Mori, “Effect of impingement angle on the outcome of single water drop impact onto a plane water surface,” Exp. Fluids, vol. 44, no. 2, pp. 331–339, 2008. DOI: 10.1007/s00348-007-0406-z.
  • Y. Guo, and Y. Lian, “High-speed oblique drop impact on thin liquid films,” Phys. Fluids, vol. 29, no. 8, pp. 82108, 2017. DOI: 10.1063/1.4996588.
  • C. Liu, M. Shen, and J. Wu, “Investigation of a single droplet impact onto a liquid film with given horizontal velocity,” Eur. J. Mech. B/Fluids, vol. 67, pp. 269–279, 2018. DOI: 10.1016/j.euromechflu.2017.09.012.
  • Q. Yang, X. H. Wang, L. Zhu, R. J. Wang, and J. Q. Zhao, “Numerical investigation of local heat transfer characteristics of an oblique droplet impacting a wetted wall,” Case Stud. Thermal Eng., vol. 14, pp. 100461, 2019. DOI: 10.1016/j.csite.2019.100461.
  • M. Sussman, and E. G. Puckett, “A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows,” J. Comput. Phys., vol. 162, no. 2, pp. 301–337, 2000. DOI: 10.1006/jcph.2000.6537.
  • C. W. Hirt, and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • S. Osher, and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988. DOI:. DOI: 10.1016/0021-9991(88)90002-2.
  • B. Ray, G. Biswas, and A. Sharma, “Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface,” J. Fluid Mech., vol. 655, pp. 72–104, 2010. DOI: 10.1017/S0022112010000662.
  • Y. Guo, F. Wang, L. Gong, and S. Shen, “Evolution and heat transfer after droplet impact on heated liquid film with vapor bubbles inside,” Numer. Heat Trans. Part B Fund., vol. 76, no. 5, pp. 273–284, 2019. DOI: 10.1080/10407790.2019.1665419.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface-tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • X. Gao, L. Kong, R. Li, and J. Han, “Heat transfer of single drop impact on a film flow cooling a hot surface,” Int. J. Heat Mass Tran., vol. 108, pp. 1068–1077, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.