Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 4
86
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

An optimized compact reconstruction weighted essentially non-oscillatory scheme for Degasperis-Procesi equation

, &
Pages 328-347 | Received 26 Oct 2019, Accepted 27 Dec 2019, Published online: 23 Jan 2020

References

  • H. A. Eschenfelder, Magnetic Bubble Technology. Berlin, Germany: Springer, 1980.
  • Z. Cao, D. Sun, B. Yu, and J. Wei, “A coupled volume of fluid and level set method based on analytic PLIC for unstructured quadrilateral grids,” Numer. Heat Transfer B, vol. 73, no. 4, pp. 189–205, 2018.
  • Z. H. Gu, H. L. Wen, Y. Yao, and C. H. Yu, “A volume of fluid method algorithm for simulation of surface tension dominant two-phase flows,” Numer. Heat Transfer B, vol. 76, no. 1, pp. 1–17, 2019.
  • M. Griebel, and M. Klitz, “CLSVOF as a fast and mass-conserving extension of the level-set method for the simulation of two-phase flow problems,” Numer. Heat Transfer B, vol. 71, no. 1, pp. 1–36, 2017.
  • Y. Y. Tsui, C. Y. Liu, and S. W. Lin, “Coupled level-set and volume-of-fluid method for two-phase flow calculations,” Numer. Heat Transfer B, vol. 71, no. 2, pp. 173–185, 2017.
  • J. M. Alam, N. K.-R. Kevlahan, O. V. Vasilyev, and Z. Hossain, “A multiresolution model for the simulation of transient heat and mass Transfer,” Numer. Heat Transfer B, vol. 61, no. 3, pp. 147–170, 2012. DOI: 10.1080/10407790.2012.666167.
  • S. J. Liao, “Do peaked solitary water waves indeed exist,” Commun. Nonlinear Sci., vol. 19, no. 6, pp. 1792–1821, 2014.
  • B. Q. Xia, Z. J. Qiao, and J. B. Li, “An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions,” Commun. Nonlinear Sci., vol. 63, pp. 292–306, 2018.
  • D. Pan, “A high-order finite volume method for solving one dimensional convection and diffusion equations,” Numer. Heat Transfer B, vol. 73, no. 6, pp. 533–548, 2017.
  • M. Xu, “A high-order finite volume scheme for unsteady convection-dominated convection-diffusion equations,” Numer. Heat Transfer B, vol. 76, no. 5, pp. 253–272, 2019.
  • A. Degasperis, D. D. Holm, and A. N. W. Hone, “A new integrable equation with peakon solutions,” Theor. Math. Phys., vol. 133, no. 2, pp. 1463–1474, 2002.
  • S. L. Xie, Q. Lin, and B. Gao, “Periodic and solitary travelling-wave solutions of a CH-DP equation,” Commun. Nonlinear Sci., vol. 16, no. 10, pp. 3941–3948, 2011.
  • M. Yoshimasa, “Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit,” Inverse Probl., vol. 21, pp. 1553–1570, 2005.
  • A. Degasperis, and M. Procesi, “Asymptotic integrability,” in Symmetry and Perturbation Theory, vol. 23–37, Singapore: World Scientific, 1999.
  • R. Camassa, and D. D. Holm, “An integrable shallow water equation with peaked solitons,” Phys. Rev. Lett, vol. 71, no. 11, pp. 1661–1664, 1993.
  • B. Fuchssteiner, and A. S. Fokas, “Symplectic structures their Bäcklund transformation and hereditary symmetries,” Physica D, vol. 4, no. 1, pp. 47–66, 1981. DOI: 10.1016/0167-2789(81)90004-X.
  • R. Camassa, D. D. Holm, and J. M. Hyman, “A new integrable shallow water equation,” Adv. Appl. Mech., vol. 31, pp. 1–33, 1994.
  • A. Constantin, and D. Lannes, “The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,” Arch. Rational Mech. Anal., vol. 192, no. 1, pp. 165–186, 2009. DOI: 10.1007/s00205-008-0128-2.
  • H. Lundmark, and J. Szmigielski, “Degasperis-Procesi peakons and the discrete cubic string,” Int. Math Res. Pap, vol. 2005, no. 2, pp. 53–116, 2005. DOI: 10.1155/IMRP.2005.53.
  • Y. Miyatake, and T. Matsuo, “Conservative finite difference schemes for the Degasperis-Procesi equation,” J. Comput. Appl. Math., vol. 236, no. 15, pp. 3728–3740, 2012. DOI: 10.1016/j.cam.2011.09.004.
  • H. Holden, and X. Raynaud, “Convergence of a finite difference scheme for the Camassa-Holm equation,” SIAM J. Numer. Anal, vol. 44, no. 4, pp. 1655–1680, 2006. DOI: 10.1137/040611975.
  • P. H. Chiu, L. Lee, and T. W. H. Sheu, “A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation,” J. Comput. Phys., vol. 228, no. 21, pp. 8034–8052, 2009. DOI: 10.1016/j.jcp.2009.07.030.
  • P. H. Chiu, L. Lee, and T. W. H. Sheu, “A sixth-order dual preserving algorithm for the Camassa-Holm equation,” J. Comput. Appl. Math., vol. 233, no. 11, pp. 2767–2778, 2010. DOI: 10.1016/j.cam.2009.11.023.
  • X. C. W. Shu, “A local discontinuous Galerkin method for the Camassa-Holm equation,” SIAM J. Numer. Anal., vol. 46, no. 4, pp. 1998–2021, 2008. DOI: 10.1137/070679764.
  • D. Cohen, B. Owren, and X. Raynaud, “Multi-symplectic integration of the Camassa-Holm equation,” J. Comput. Phys., vol. 227, no. 11, pp. 5492–5512, 2008. DOI: 10.1016/j.jcp.2008.01.051.
  • R. Camassa, J. Huang, and L. Lee, “On a completely integrable numerical scheme for a nonlinear shallow-water wave equation,” J. Nonlinear Math. Phys., vol. 12, no. sup1, pp. 146–162, 2005. DOI: 10.2991/jnmp.2005.12.s1.13.
  • R. Camassa, J. Huang, and L. Lee, “Integral and integrable algorithms for a nonlinear shallow-water wave equation,” J. Comput. Phys, vol. 216, no. 2, pp. 547–572, 2006. DOI: 10.1016/j.jcp.2005.12.013.
  • T. Matsuo, and H. Yamaguchi, “An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations,” J. Comput. Phys., vol. 228, no. 12, pp. 4346–4358, 2009. DOI: 10.1016/j.jcp.2009.03.003.
  • Y. Ohta, K. Maruno, and B. Feng, “An integrable semi-discretization of the Camassa–Holm equation and its determinant solution,” J. Phys. A-Math. Theor., vol. 41, no. 35, pp. 443–452, 2008.
  • B. F. Feng, and Y. Liu, “An operator splitting method for the Degasperis-Procesi equation,” J. Comput. Phys., vol. 228, no. 20, pp. 7805–7820, 2009. DOI: 10.1016/j.jcp.2009.07.022.
  • H. A. Hoel, “A numerical scheme using multi-shock peakons to compute solutions of the Degasperis-Procesi equation,” Electron J. Differ. Equations, vol. 2007, no. 100, pp. 249–266, 2007.
  • Y. Xu, and C. W. Shu, “Local discontinuous Galerkin methods for high-order time-dependent partial differential equations,” Commun. Comput. Phys., vol. 7, no. 4, pp. 1–46, 2010.
  • Y. Xu, and C. W. Shu, “Local discontinuous Galerkin methods for the Degasperis-Procesi equation,” Commun. Comput. Phys, vol. 10, no. 2, pp. 474–508, 2011. DOI: 10.4208/cicp.2009.09.023.
  • T. H. Shieh, and M. C. Chen, “Study of high-order-accurate limiters for time-dependent contact discontinuity and shock capturing,” Numer. Heat Transfer B, vol. 70, no. 1, pp. 56–79, 2016. DOI: 10.1080/10407790.2015.1052296.
  • S. Dave, C. Anghan, S. Saincher, and J. Banerjee, “A high-resolution Navier-Stokes solver for direct numerical simulation of free shear flow,” Numer. Heat Transfer B, vol. 74, no. 6, pp. 840–860, 2018. DOI: 10.1080/10407790.2019.1580952.
  • Z. Li, Y. Ju, and C. Zhang, “Hybrid central-WENO scheme for the large eddy simulation of turbulent flows with shocks,” Numer. Heat Transfer B, vol. 72, no. 2, pp. 170–189, 2017. DOI: 10.1080/10407790.2017.1358984.
  • C. H. Yu, and T. W. H. Sheu, “A dispersively accurate compact finite difference method for the Degasperis-Procesi equation,” J. Comput. Phys., vol. 236, no. 1, pp. 493–512, 2013. DOI: 10.1016/j.jcp.2012.10.046.
  • B. P. Leonard, “The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection,” Comput. Method Appl. M, vol. 88, no. 1, pp. 17–74, 1991. DOI: 10.1016/0045-7825(91)90232-U.
  • W. Oevel, “Symplectic Runge-Kutta schemes II: Classification of symplectic method,” Preprint, 1998.
  • C. H. Yu, Z. Gao, and T. W. H. Sheu, “Development of a symplectic and phase error reducing perturbation finite-difference advection scheme,” Numer. Heat Transfer B, vol. 70, no. 2, pp. 136–151, 2016. DOI: 10.1080/10407790.2015.1097241.
  • Z. H. Gu, H. L. Wen, S. Ye, R. D. An, and C. H. Yu, “Development of a mass-preserving level set redistancing algorithm for simulation of rising bubble,” Numer. Heat Transfer B, vol. 74, no. 4, pp. 699–727, 2018. vol DOI: 10.1080/10407790.2018.1525157.
  • D. Ghosh, and J. D. Baeder, “Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws,” SIAM J. Sci. Comput., vol. 34, no. 3, pp. A1678–A1706, 2012. DOI: 10.1137/110857659.
  • G. S. Jiang, and C. W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys., vol. 126, no. 1, pp. 202–228, 1996. DOI: 10.1006/jcph.1996.0130.
  • H. Lundmark, “Formation and dynamics of shock waves in the Degasperis-Procesi equation,” J. Nonlinear Sci., vol. 17, no. 3, pp. 169–198, 2007. DOI: 10.1007/s00332-006-0803-3.
  • Y. Liu, and Z. Yin, “Global existence and blow-up phenomena for the Degasperis-Procesi equation,” Commun. Math Phys., vol. 267, no. 3, pp. 801–820, 2006. DOI: 10.1007/s00220-006-0082-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.