Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 4
937
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Unified formula for the field synergy principle

, , , &
Pages 287-298 | Received 06 Sep 2019, Accepted 27 Dec 2019, Published online: 23 Jan 2020

References

  • B. Kundu and K. S. Lee, “A proper analytical analysis of annular step porous fins for determining maximum heat transfer,” Energy Conv. Manag., vol. 110, pp. 469–480, 2016. DOI: 10.1016/j.enconman.2015.09.037.
  • M. H. Kim, H. Kim, D. R. Kim, and K. S. Lee, “A novel louvered fin design to enhance thermal and drainage performances during periodic frosting/defrosting conditions,” Energy Conv. Manag, vol. 110, pp. 494–500, 2016. DOI: 10.1016/j.enconman.2015.11.028.
  • J. F. Fan, W. K. Ding, Y. L. He, and W. Q. Tao, “Three-dimensional numerical study of fluid and heat transfer characteristics of dimpled fin surfaces,” Numer. Heat Tranf. A-Appl, vol. 62, no. 4, pp. 271–294, 2012. DOI: 10.1080/10407782.2012.666931.
  • R. A. Khachfe and Y. Jarny, “Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques,” Numer Heat Tranf. B-Fundam, vol. 37, pp. 45–67, 2000.
  • W. Wang, Y. N. Zhang, J. Liu, Z. Wu, B. X. Li, and B. Sundén, “Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes,” Numer. Heat Tranf. A-Appl, vol. 73, no. 1, pp. 1–18, 2018.
  • Q. W. Wang, B. Sundén, Y. T. Chen, Z. X. Guo, and P. Stehlik, “Selected papers presented at the First International Workshop on heat transfer advances for energy conservation and pollution control,” Heat Transf. Eng, vol. 35, pp. 49–550, 2014.
  • X. T. Liu, G. H. Zhang, B. Sundén, and G. N. Xie, “Numerical predictions of flow and heat transfer of film cooling with an internal channel roughened by crescent ribs,” Numer. Heat Tranf. A-Appl, vol. 74, no. 9, pp. 1539–1564, 2018. DOI: 10.1080/10407782.2018.1538291.
  • S. T. Wang, H. Yan, L. Luo, W. Du, B. Sundén, and X. H. Zhang, “Heat transfer characteristics of a dimpled/protrusioned pin fin wedge duct with different converging angles for turbine blades,” Numer. Heat Tranf. A-Appl, vol. 76, no. 5, pp. 369–392, 2019. DOI: 10.1080/10407782.2019.1630235.
  • J. Cor Joseph. “Modeling centrifugal, multiphase, turbulent flows with a mixture-averaged drift-flux algorithm,” Numer Heat Tranf. B-Fundam, vol. 74, no. 4, pp. 647–660, 2018. DOI: 10.1080/10407790.2019.1580045.
  • F. Moukalled, L. Mangani, and M. Darwish, “The characteristic boundary condition in pressure-based methods,” Numer Heat Tranf. B-Fundam, vol. 76, no. 2, pp. 43–59, 2019. DOI: 10.1080/10407790.2019.1644942.
  • P. U. Ogban and G. F. Naterer, “Control volume finite element method for entropy generation minimization in mixed convection of nanofluids,” Numer Heat Tranf. B-Fundam, vol. 75, no. 6, pp. 363–382, 2019. DOI: 10.1080/10407790.2019.1627797.
  • J. M. Gorman, E. M. Sparrow, J. P. Abraham, and W. J. Minkowycz, “Evaluation of the efficacy of turbulence models for swirling flows and the effect of turbulence intensity on heat transfer,” Numer Heat Tranf. B-Fundam, vol. 70, no. 6, pp. 485–502, 2016. DOI: 10.1080/10407790.2016.1244390.
  • Z. Y. Guo, D. Y. Li, and B. X. Wang, “A novel concept for convective heat transfer enhancement,” Int. J. Heat Mass Transf, vol. 41, no. 14, pp. 2221–2225, 1998. DOI: 10.1016/S0017-9310(97)00272-X.
  • Z. Y. Guo, W. Q. Tao, and R. K. Shah, “The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer,” Int. J. Heat Mass Transf, vol. 48, no. 9, pp. 1797–1807, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.11.007.
  • W. Q. Tao, Z. Y. Guo, and B. X. Wang, “Field synergy principle for enhancing convective heat transfer––its extension and numerical verifications,” Int. J. Heat Mass Transf, vol. 45, no. 18, pp. 3849–3856, 2002. DOI: 10.1016/S0017-9310(02)00097-2.
  • B. Zhang, J. S. Lv, and J. X. Zuo, “Compressible fluid flow field synergy principle and its application to drag reduction in variable-cross-section pipeline,” Int. J. Heat Mass Transf, vol. 77, pp. 1095–1101, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.027.
  • W. Q. Tao, Y. L. He, Q. W. Wang, Z. G. Qu, and F. Q. Song, “A unified analysis on enhancing single phase convective heat transfer with field synergy principle,” Int. J. Heat Mass Transf, vol. 45, no. 24, pp. 4871–4879, 2002. DOI: 10.1016/S0017-9310(02)00173-4.
  • Y. L. He, W. Q. Tao, F. Q. Song, and W. Zhang, “Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle,” Int. J. Heat Fluid Flow, vol. 26, no. 3, pp. 459–473, 2005. DOI: 10.1016/j.ijheatfluidflow.2004.11.003.
  • S. Shen, W. Liu, and W. Q. Tao, “Analysis of field synergy on natural convective heat transfer in porous media,” Int. Commun. Heat Mass Transf, vol. 30, no. 8, pp. 1081–1090, 2003. DOI: 10.1016/S0735-1933(03)00174-X.
  • Y. P. Cheng, T. S. Lee, and H. T. Low, “Numerical analysis of mixed convection in three-dimensional rectangular channel with fush-mounted heat sources based on field synergy principle,” Int. J. Numer. Methods Fluids, vol. 52, no. 9, pp. 987–1003, 2006. DOI: 10.1002/fld.1218.
  • Q. Chen, M. R. Wang, and Z. Y. Guo, “Field Synergy Principle for Energy Conservation Analysis and Application,” Adv. Mech. Eng, vol. 2, pp. 1652–1660, 2010.
  • H. W. He, H. Jia, W. W. Huo, and F. C. Sun, “Field synergy analysis and optimization of the thermal behavior of lithium ion battery packs,” Energies, vol. 10, no. 1, pp. 81–91, 2017. DOI: 10.3390/en10010081.
  • Y. G. Lei, F. Zheng, C. F. Song, and Y. K. Lyu, “Improving the thermal hydraulic performance of a circular tube by using punched delta-winglet vortex generators,” Int. J. Heat Mass Transf, vol. 111, pp. 299–311, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.101.
  • B. Lotfi, B. Sundén, and Q. W. Wang, “An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators,” Appl. Energy, vol. 162, pp. 1282–1302, 2016. DOI: 10.1016/j.apenergy.2015.07.065.
  • G. F. Lu and G. B. Zhou, “Numerical simulation on performances of plane and curved winglet – Pair vortex generators in a rectangular channel and field synergy analysis,” Int. J. Therm. Sci, vol. 109, pp. 323–333, 2016. DOI: 10.1016/j.ijthermalsci.2016.06.024.
  • C. Habchi, T. Lemenand, D. D. Valle, L. Pacheco, O. L. Corre, and H. Peerhossaini, “Entropy production and field synergy principle in turbulent vortical flows,” Int. J. Therm. Sci, vol. 50, no. 12, pp. 2365–2376, 2011. DOI: 10.1016/j.ijthermalsci.2011.07.012.
  • Y. P. Cao, H. B. Ke, Y. S. Lin, M. Zeng, and Q. W. Wang, “Investigation on the flow noise propagation mechanism in pipelines of shell-and-tube heat exchangers based on synergy principle of flow and sound fields,” Appl. Thermal Eng, vol. 122, pp. 339–349, 2017. DOI: 10.1016/j.applthermaleng.2017.04.057.
  • X. Y. Zhang, Z. X. Liu, and W. Liu, “Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes,” Int. J. Therm. Sci, vol. 58, pp. 157–167, 2012. DOI: 10.1016/j.ijthermalsci.2012.02.025.
  • Z. Li, W. Q. Tao, and Y. L. He, “A numerical study of laminar convective heat transfer in microchannel with non-circular cross-section,” Int. J. Therm. Sci, vol. 45, no. 12, pp. 1140–1148, 2006. DOI: 10.1016/j.ijthermalsci.2006.01.011.
  • S. M. Shahril, G. A. Quadir, N. A. M. Amin, and I. A. Badruddin, “Numerical investigation on the thermohydraulic performance of a shell-and-double concentric tube heat exchanger using nanofluid under the turbulent flow regime,” Numer. Heat Tranf. A-Appl, vol. 71, no. 2, pp. 215–231, 2017. DOI: 10.1080/10407782.2016.1264736.
  • Y. P. Cheng, Z. G. Qu, W. Q. Tao, and Y. L. He, “Numerical design of efficient slotted fin surface based on the field synergy principle,” Numer. Heat Tranf. A-Appl, vol. 45, no. 6, pp. 517–538, 2004. DOI: 10.1080/10407780490277644.
  • Y. B. Tao, Y. L. He, Z. G. Wu, and W. Q. Tao, “Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes,” Int. J. Heat Fluid Flow, vol. 28, no. 6, pp. 1531–1544, 2007. DOI: 10.1016/j.ijheatfluidflow.2007.02.001.
  • J. F. Guo, M. T. Xu, and L. Cheng, “Numerical investigations of curved square channel from the viewpoint of field synergy principle,” Int. J. Heat Mass Transf, vol. 54, no. 17-18, pp. 4148–4151, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.03.054.
  • X. W. Zhu and J. Q. Zhao, “Improvement in field synergy principle: More rigorous application, better results,” Int. J. Heat Mass Transf, vol. 100, pp. 347–354, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.003.
  • H. Benzenine, R. Saim, S. Abboudi, O. Imine, H. F. Oztop, and N. Abu-Hamdeh, “Numerical study of a three-dimensional forced laminar flow in a channel equipped with a perforated baffle,” Numer. Heat Tranf. A-Appl, vol. 73, no. 12, pp. 881–894, 2018. DOI: 10.1080/10407782.2018.1486645.
  • J. Ahn, E. M. Sparrow, J. M. Gorman, and W. J. Minkowycz, “Investigation of coupled systems consisting of fluid movers and heat-exchange devices,” Numer. Heat Tranf. A-Appl, vol. 70, no. 9, pp. 964–979, 2016. DOI: 10.1080/10407782.2016.1214480.
  • J. M. Gorman, E. M. Sparrow, S. D. M. Katz, and W. J. Minkowycz, “Convective heat transfer coefficients on all external surfaces of a generic residential building in crossflow,” Numer. Heat Tranf. A-Appl, vol. 75, no. 2, pp. 71–79, 2019. DOI: 10.1080/10407782.2019.1574474.