Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 1
113
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of radiation spectra of composite with periodic micron porous structure

, , &
Pages 54-69 | Received 10 Feb 2020, Accepted 19 Mar 2020, Published online: 06 Apr 2020

References

  • A. Kribus et al., “The promise and challenge of solar volumetric absorbers,” Sol. Energy, vol. 110, pp. 463–481, 2014. DOI: 10.1016/j.solener.2014.09.035.
  • M. Kaplan and M. Hall, “The combustion of liquid fuels within a porous media radiant burner,” Exp. Thermal Fluid Sci., vol. 11, no. 1, pp. 13–20, 1995. DOI: 10.1016/0894-1777(94)00106-I.
  • C. Ferraro et al., “SiC porous structures obtained with innovative shaping technologies,” J. Eur. Ceram. Soc., vol. 38, no. 3, pp. 823–835, 2018. DOI: 10.1016/j.jeurceramsoc.2017.09.048.
  • M. Sheikholeslami, M. Jafaryar, and Z. Li, “Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators,” J. Mol. Liq., vol. 263, pp. 489–500, 2018. DOI: 10.1016/j.molliq.2018.04.147.
  • D. Le Hardy et al., “3D numerical modelling of the propagation of radiative intensity through a X-ray tomographied ligament,” J. Quant. Spectrosc. Radiat. Transf., vol. 194, pp. 86–97, 2017. DOI: 10.1016/j.jqsrt.2017.03.006.
  • S. Cunsolo, R. Coquard, D. Baillis, and N. Bianco, “Radiative properties modeling of open cell solid foam: review and new analytical law,” Int. J. Therm. Sci., vol. 104, pp. 122–134, 2016. DOI: 10.1016/j.ijthermalsci.2015.12.017.
  • S. Guevelou, B. Rousseau, G. Domingues, J. Vicente, and C. Caliot, “Representative elementary volumes required to characterize the normal spectral emittance of silicon carbide foams used as volumetric solar absorbers,” Int. J. Heat Mass Transf., vol. 93, pp. 118–129, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.069.
  • B. Rousseau, J. Y. Rolland, P. Echegut, E. Brun, and J. Vicente, “Numerical prediction of the radiative behavior of metallic foams from the microscopic to macroscopic scale,” J. Phys.: Conf. Ser., vol. 369, no. 1, pp. 012003, 2012. DOI: 10.1088/1742-6596/369/1/012003.
  • Y. Li, X.-L. Xia, Q. Ai, C. Sun, and H.-P. Tan, “Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets,” Infrared Phys. Technol., vol. 89, pp. 77–87, 2018. DOI: 10.1016/j.infrared.2017.12.016.
  • B. Zeghondy, E. Lacona, and J. Taine, “Experimental and RDFI calculated radiative properties of a mullite foam,” Int. J. Heat Mass Transf., vol. 49, no. 19–20, pp. 3702–3707, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.02.036.
  • M. Loretz, E. Maire, and D. Baillis, “Analytical modelling of the radiative properties of metallic foams: contribution of X-ray tomography,” Adv. Eng. Mater., vol. 10, no. 4, pp. 352–360, 2008. DOI: 10.1002/adem.200700334.
  • B. Dietrich et al., “Optical parameters for characterization of thermal radiation in ceramic sponges—experimental results and correlation,” Int. J. Heat Mass Transf., vol. 79, pp. 655–665, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.023.
  • Y. Li, X.-L. Xia, C. Sun, H.-P. Tan, and J. Wang, “Pore-level numerical analysis of the infrared surface temperature of metallic foam,” J. Quant. Spectrosc. Radiat. Transf., vol. 200, pp. 59–69, 2017. DOI: 10.1016/j.jqsrt.2017.06.004.
  • J. Randrianalisoa and D. Baillis, “Thermal conductive and radiative properties of solid foams: traditional and recent advanced modelling approaches,” C. R. Phys., vol. 15, no. 8–9, pp. 683–695, 2014. DOI: 10.1016/j.crhy.2014.09.002.
  • A. Füssel, D. Böttge, J. Adler, F. Marschallek, and A. Michaelis, “Cellular ceramics in combustion environments,” Adv. Eng. Mater., vol. 13, no. 11, pp. 1008–1014, 2011. DOI: 10.1002/adem.201100020.
  • K. A. A. Min-Dianey, H.-C. Zhang, A. A. Brohi, H. Yu, and X. Xia, “Optical spectra of composite silver-porous silicon (Ag-pSi) nanostructure based periodical lattice,” Superlattices Microstruct., vol. 115, pp. 168–176, 2018. DOI: 10.1016/j.spmi.2018.01.028.
  • M. Sheikholeslami and M. K. Sadoughi, “Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface,” Int. J. Heat Mass Transf., vol. 116, pp. 909–919, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.086.
  • D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B: Condensed Matter, vol. 394, no. 2, pp. 197–202, 2007. DOI: 10.1016/j.physb.2006.12.048.
  • P. Carpio, E. Bannier, M. D. Salvador, R. Benavente, and E. Sanchez, “Multilayer and particle size-graded YSZ coatings obtained by plasma spraying of micro- and nanostructured feedstocks,” J. Therm. Spray Technol., vol. 23, no. 8, pp. 1362–1372, 2014.
  • G. D’Aguanno and N. Mattiucci, “Dispersive and scattering properties of multilayer arrays made of plasmonic nanoparticles,” J. Opt. Soc. Am. B: Opt. Phys., vol. 31, pp. 2524–2530, 2014.
  • H.-Y. Yang, S.-W. Chen, I.-B. Lin, and J.-H. Li, “Enhanced light trapping for the silver nanoparticles embedded in the silica layer atop the silicon substrate,” Appl. Phys. A, vol. 112, no. 3, pp. 525–532, 2013. DOI: 10.1007/s00339-013-7755-7.
  • Y. P. Shi et al., “Multilayer silver nanoparticles for light trapping in thin film solar cells,” J. Appl. Phys., vol. 113, pp. 3, 2013.
  • P. Shokeen, A. Jain, V. Gupta, and A. Kapoor, “Multilayer silver nanoparticles embedded in graded-index dielectric layers,” Opt. Mater., vol. 66, pp. 29–34, 2017. DOI: 10.1016/j.optmat.2017.01.038.
  • V. Ovchinnikov, “Reflection from irregular array of silver nanoparticles on multilayer substrate,” in Proceedings of the Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies (ICQNM 2015), 2015, pp. 16–21.
  • M. L. Protopapa, A. Rizzo, M. Re, and L. Pilloni, “Layered silver nanoparticles embedded in a BaF2 matrix: optical characterization,” Appl. Opt., vol. 48, no. 35, pp. 6662–6669, 2009. DOI: 10.1364/AO.48.006662.
  • M. Sheikholeslami, “New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media,” Comput. Methods Appl. Mech. Eng., vol. 344, pp. 319–333, 2019. DOI: 10.1016/j.cma.2018.09.044.
  • M. Sheikholeslami, “Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method,” Comput. Methods Appl. Mech. Eng., vol. 344, pp. 306–318, 2019. DOI: 10.1016/j.cma.2018.09.042.
  • M. Sheikholeslami, S. A. Shehzad, Z. Li, and A. Shafee, “Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law,” Int. J. Heat Mass Transf., vol. 127, pp. 614–622, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.013.
  • E. D. Palik, Handbook of Optical Constants of Solids. Orlando, FL: Academic Press, 1985.
  • K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, pp. 302–307, 1966.
  • D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, 2nd ed. Hoboken, NJ: IEEE Press, 2013.
  • Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf., vol. 98, pp. 833–844, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.071.
  • Y. B. Chen and K. H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int. J. Heat Mass Transf., vol. 53, no. 23–24, pp. 5542–5551, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.