Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 2
186
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A new meshless “fragile points method” and a local variational iteration method for general transient heat conduction in anisotropic nonhomogeneous media. Part I: Theory and implementation

, , , ORCID Icon &
Pages 71-85 | Received 10 Jan 2020, Accepted 19 Mar 2020, Published online: 07 Apr 2020

References

  • V. Sladek, J. Sladek, M. Tanaka and C. Zhang, “Transient heat conduction in anisotropic and functionally graded media by local integral equations,” Eng. Anal. Boundary Elem., vol. 29, no. 11, pp. 1047–1065, 2005. DOI: 10.1016/j.enganabound.2005.05.011.
  • K. J. Quint, S. Hartmann, S. Rothe, N. Saba and K. Steinhoff, “Experimental validation of high-order time integration for non-linear heat transfer problems,” Comput. Mech., vol. 48, no. 1, pp. 81–96, 2011. DOI: 10.1007/s00466-011-0572-y.
  • J. Zhang and S. Chauhan, “Fast explicit dynamics finite element algorithm for transient heat transfer,” Int. J. Therm. Sci., vol. 139, pp. 160–175, 2019. DOI: 10.1016/j.ijthermalsci.2019.01.030.
  • L. Chen, W. Lengauer, P. Ettmayer, K. Dreyer, H. W. Daub and D. Kassel, “Fundamentals of liquid phase sintering for modern cermets and functionally graded cemented carbonitrides (FGCC),” Int. J. Refract. Met. Hard Mater., vol. 18, no. 6, pp. 307–322, 2000. DOI: 10.1016/S0263-4368(00)00041-X.
  • J. Sladek, V. Sladek, C. L. Tan and S. N. Atluri, “Analysis of transient heat conduction in 3D anisotropic functionally graded solids, by the MLPG method,” CMES—Comput. Modeling Eng. Sci., vol. 32, no. 3, pp. 161–174, 2008.
  • M. Şimşek, “Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method,” Int. J. Eng. Appl. Sci., vol. 1, no. 3, pp. 1–11, 2009.
  • Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki and R. G. Ford, Functionally Graded Materials: Design, Processing and Applications, vol. 5. New York: Springer Science & Business Media, 2013.
  • R. J. LeVeque and R. J. Leveque, Numerical Methods for Conservation Laws, vol. 132. Basel: Springer, 1992.
  • M. Afrasiabi, M. Roethlin and K. Wegener, “Contemporary meshfree methods for three dimensional heat conduction problems,” Arch. Comput. Methods Eng., pp. 1–35, 2019. [advance online publication]. DOI: 10.1007/s11831-019-09355-7.
  • O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals. Oxford: Elsevier, 2005.
  • B. Shen, A. J. Shih and G. Xiao, “A heat transfer model based on finite difference method for grinding,” J. Manuf. Sci. Eng., vol. 133, no. 3, pp. 31001, 2011. DOI: 10.1115/1.4003947.
  • J. C. Chai, H. S. Lee and S. V. Patankar, “Finite volume method for radiation heat transfer,” J. Thermophys. Heat Transfer, vol. 8, no. 3, pp. 419–425, 1994. DOI: 10.2514/3.559.
  • L. C. Wrobel and A. J. Kassab, “Boundary element method, volume 1: Applications in thermo-fluids and acoustics,” Appl. Mech. Rev., vol. 56, no. 2, pp. B17, 2003.
  • J. Wen and M. M. Khonsari, “Transient heat conduction in rolling/sliding components by a dual reciprocity boundary element method,” Int. J. Heat Mass Transfer, vol. 52, no. 5–6, pp. 1600–1607, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.07.039.
  • P. W. Randles and L. D. Libersky, “Smoothed particle hydrodynamics: Some recent improvements and applications,” Computer Methods Appl. Mech. Eng., vol. 139, no. 1–4, pp. 375–408, 1996. DOI: 10.1016/S0045-7825(96)01090-0.
  • W. K. Liu, S. Jun and Y. F. Zhang, “Reproducing kernel particle methods,” Int. J. Numer. Meth. Fluids, vol. 20, no. 8–9, pp. 1081–1106, 1995. DOI: 10.1002/fld.1650200824.
  • J. K. Chen, J. E. Beraun and T. C. Carney, “A corrective smoothed particle method for boundary value problems in heat conduction,” Int. J. Numer. Meth. Eng., vol. 46, no. 2, pp. 231–252, 1999. DOI: 10.1002/(SICI)1097-0207(19990920)46:2<231::AID-NME672>3.0.CO;2-K.
  • D. I. Graham and J. P. Hughes, “Accuracy of SPH viscous flow models,” Int. J. Numer. Meth. Fluids, vol. 56, no. 8, pp. 1261–1269, 2008. DOI: 10.1002/fld.1619.
  • B. Nayroles, G. Touzot and P. Villon, “Generalizing the finite element method: Diffuse approximation and diffuse elements,” Comput. Mech., vol. 10, no. 5, pp. 307–318, 1992. DOI: 10.1007/BF00364252.
  • Y. Krongauz and T. Belytschko, “A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG,” Comput. Mech., vol. 19, no. 4, pp. 327–333, 1997. DOI: 10.1007/s004660050181.
  • T. Belytschko, Y. Y. Lu and L. Gu, “Element-free Galerkin methods,” Int. J. Numer. Meth. Eng., vol. 37, no. 2, pp. 229–256, 1994. DOI: 10.1002/nme.1620370205.
  • T. Zhu and S. N. Atluri, “A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method,” Comput. Mech., vol. 21, no. 3, pp. 211–222, 1998. DOI: 10.1007/s004660050296.
  • T. Zhu, J. Zhang and S. N. Atluri, “Meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems,” Eng. Anal. Boundary Elem., vol. 23, no. 5–6, pp. 375–389, 1999. DOI: 10.1016/S0955-7997(98)00096-4.
  • S. N. Atluri and T. Zhu, “A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech., vol. 22, no. 2, pp. 117–127, 1998. DOI: 10.1007/s004660050346.
  • M. Shibahara and S. N. Atluri, “The meshless local Petrov-Galerkin method for the analysis of heat conduction due to a moving heat source, in welding,” Int. J. Therm. Sci., vol. 50, no. 6, pp. 984–992, 2011. DOI: 10.1016/j.ijthermalsci.2010.12.012.
  • L. Dong, T. Yang, K. Wang and S. N. Atluri, “A new Fragile Points Method (FPM) in computational mechanics, based on the concepts of point stiffnesses and numerical flux corrections, engineering analysis with boundary elements,” Eng. Anal. Boundary Elem., vol. 107, pp. 124–133, 2019. DOI: 10.1016/j.enganabound.2019.07.009.
  • D. N. Arnold, F. Brezzi, B. Cockburn and L. Donatella Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM J. Numer. Anal., vol. 39, no. 5, pp. 1749–1779, 2002. DOI: 10.1137/S0036142901384162.
  • I. Mozolevski, E. Süli and P. R. Bösing, “hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation,” J. Sci. Comput., vol. 30, no. 3, pp. 465–491, 2007. DOI: 10.1007/s10915-006-9100-1.
  • T. Yang, L. Dong and S. N. Atluri, “An elementarily simple Galerkin meshless method: The Fragile Points Method (FPM) using point stiffness matrices, for 2D Elasticity problems in complex domains,” arXiv Preprint arXiv:1909.04149, 2019.
  • X. Wang, W. Pei and S. N. Atluri, “Bifurcation & chaos in nonlinear structural dynamics: Novel & highly efficient optimal-feedback accelerated Picard iteration algorithms,” Commun. Nonlinear Sci. Numer. Simul., vol. 65, pp. 54–69, 2018. DOI: 10.1016/j.cnsns.2018.05.008.
  • G. D. Smith, G. D. Smith and G. D. S. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford: Oxford university press, 1985.
  • E. Fehlberg, “Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems,” NASA Technical Report, 1969.
  • N. M. Newmark, A Method of Computation for Structural Dynamics. USA: American Society of Civil Engineers, 1959.
  • H. M. Hilber, T. J. R. Hughes and R. L. Taylor, “Improved numerical dissipation for time integration algorithms in structural dynamics,” Earthquake Eng. Struct. Dyn., vol. 5, no. 3, pp. 283–292, 1977. DOI: 10.1002/eqe.4290050306.
  • J. C. Houbolt, “A recurrence matrix solution for the dynamic response of elastic aircraft,” J. Aeronaut. Sci., vol. 17, no. 9, pp. 540–550, 1950. DOI: 10.2514/8.1722.
  • H. Vie and R. A. Miller, “Estimation by limiting dilution analysis of human IL 2-secreting T cells: Detection of IL 2 produced by single lymphokine-secreting T cells,” J. Immunol., vol. 136, no. 9, pp. 3292–3297, 1986.
  • J. R. Dormand and P. J. Prince, “A reconsideration of some embedded Runge-Kutta formulae,” J. Comput. Appl. Math., vol. 15, no. 2, pp. 203–211, 1986. DOI: 10.1016/0377-0427(86)90027-0.
  • X. Wang, Q. Xu and S. N. Atluri, “A simple local variational iteration method and related algorithm for nonlinear science and engineering,” arXiv Preprint arXiv:1904.11021, 2019.
  • J. P. Thomas, C. H. Custer, E. H. Dowell, K. C. Hall and C. Corre, “Compact implementation strategy for a harmonic balance method within implicit flow solvers,” AIAA J., vol. 51, no. 6, pp. 1374–1381, 2013. DOI: 10.2514/1.J051823.
  • T. A. Elgohary, L. Dong, J. L. Junkins and S. N. Atluri, “Time domain inverse problems in nonlinear systems using collocation & radial basis functions,” CMES—Comput. Modeling Eng. Sci., vol. 100, no. 1, pp. 59–84, 2014.
  • J. H. He, “Variational iteration method - A kind of non-linear analytical technique: Some examples,” Int. J. Non-Linear Mech., vol. 34, no. 4, pp. 699–708, 1999. DOI: 10.1016/S0020-7462(98)00048-1.
  • G. Adomian, “A review of the decomposition method in applied mathematics,” J. Math. Anal. Appl., vol. 135, no. 2, pp. 501–544, 1988. DOI: 10.1016/0022-247X(88)90170-9.
  • T. Fukushima, “Picard iteration method, Chebyshev polynomial approximation, and global numerical integration of dynamical motions,” Astron. J., vol. 113, pp. 1909–1914, 1997. DOI: 10.1086/118404.
  • R. M. Woollands, A. Bani Younes and J. L. Junkins, “New solutions for the perturbed lambert problem using regularization and Picard iteration,” J. Guidance Control Dynamics, vol. 38, no. 9, pp. 1548–1562, 2015. DOI: 10.2514/1.G001028.
  • X. Wang, “Optimized Picard iteration methods for nonlinear dynamical systems with non-smooth nonlinearities, and orbital mechanics,” Ph.D. dissertation, Texas Tech University, 2019.
  • X. Wang, Q. Xu and S. N. Atluri, “Combination of the variational iteration method and numerical algorithms for nonlinear problems,” Appl. Math. Modell., vol. 79, pp. 243–259, 2020. DOI: 10.1016/j.apm.2019.10.034.
  • D. W. Mackowski, Conduction Heat Transfer: Notes for MECH 7210. Alabama: Mechanical Engineering Department, Auburn University, 2011.
  • G. Voronoi, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs,” J. für Die Reine Und Angewandte Mathematik, vol. 1908, no. 134, pp. 198–287, 1908. DOI: 10.1515/crll.1908.134.198.
  • T. Liszka and J. Orkisz, “The finite difference method at arbitrary irregular grids and its application in applied mechanics,” Comput. Struct., vol. 11, no. 1–2, pp. 83–95, 1980. DOI: 10.1016/0045-7949(80)90149-2.
  • S. Blanes, F. Casas, J. A. Oteo and J. Ros, “The Magnus expansion and some of its applications,” Phys. Rep., vol. 470, no. 5–6, pp. 151–238, 2009. DOI: 10.1016/j.physrep.2008.11.001.
  • X. Wang and S. N. Atluri, “A novel class of highly efficient and accurate time-integrators in nonlinear computational mechanics,” Comput. Mech., vol. 59, no. 5, pp. 861–876, 2017. DOI: 10.1007/s00466-017-1377-4.
  • J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. USA: Chapman and Hall/CRC, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.