Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 2
220
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A grad-div stabilized projection finite element method for a double-diffusive natural convection model

&
Pages 110-123 | Received 31 Jan 2020, Accepted 19 Mar 2020, Published online: 07 Apr 2020

References

  • A. J. Chamkha and H. Al-Naser, “Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients,” Int. J. Heat Mass Transf., vol. 45, no. 12, pp. 2465–2483, 2002. DOI: 10.1016/S0017-9310(01)00344-1.
  • K. Ghorayeb and A. Mojtabi, “Double-diffusive convection in a vertical rectangular cavity,” Phys. Fluids, vol. 9, no. 8, pp. 2339–2348, 1997. DOI: 10.1063/1.869354.
  • D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed. New York: Springer-Verlag, 2006.
  • N. Retiel, E. Bouguerra, and M. Aichouni, “Effect of curvature ratio on cooperating double-diffusive convection in vertical annular cavities,” J. Appl. Sci., vol. 6, no. 12, pp. 2541–2548, 2006. DOI: 10.3923/jas.2006.2541.2548.
  • O. V. Trevisan and A. Bejan, “Natural convection with combined heat and mass transfer buoyancy effects in a porous medium,” Int. J. Heat Mass Transf., vol. 28, no. 8, pp. 1597–1611, 1985. DOI: 10.1016/0017-9310(85)90261-3.
  • A. Çıbık and S. Kaya, “Finite element analysis of a projection-based stabilization method for the Darcy-Brinkman equations in double-diffusive convection,” Appl. Numer. Math., vol. 64, pp. 35–49, 2013. DOI: 10.1016/j.apnum.2012.06.034.
  • B. Goyeau, J. P. Songbe, and D. Gobin, “Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation,” Int. J. Heat Mass Transf., vol. 39, no. 7, pp. 1363–1378, 1996. DOI: 10.1016/0017-9310(95)00225-1.
  • A. Çıbık and S. Kaya, “A projection-based stabilized finite element method for steady-state natural convection problem,” J. Math. Anal. Appl., vol. 381, no. 2, pp. 469–484, 2011. DOI: 10.1016/j.jmaa.2011.02.020.
  • P. Z. Huang, “An efficient two-level finite element algorithm for the natural convection equations,” Appl. Numer. Math., vol. 118, pp. 75–86, 2017. DOI: 10.1016/j.apnum.2017.02.012.
  • X. Z. Li and P. Z. Huang, “A sensitivity study of relaxation parameter in Uzawa algorithm for the steady natural convection model,” Int. J. Numer. Methods Heat Fluid Flow, vol. 30, no. 2, pp. 818–833, 2019. DOI: 10.1108/HFF-05-2019-0443.
  • C. D. Sankhavara and H. J. Shukla, “Numerical investigation of natural convection in a partitioned rectangular enclosure,” Numer. Heat Transf. A: Appl., vol. 50, no. 10, pp. 975–997, 2006. DOI: 10.1080/10407780600671643.
  • M. Sheikholeslami and H. B. Rokni, “Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force,” Comput. Methods Appl. Mech. Eng., vol. 317, pp. 419–430, 2017. DOI: 10.1016/j.cma.2016.12.028.
  • L. Wang, J. Li, and P. Z. Huang, “An efficient iterative algorithm for the natural convection equations based on finite element method,” Int. J. Numer. Methods Heat Fluid Flow, vol. 28, no. 3, pp. 584–605, 2018. DOI: 10.1108/HFF-03-2017-0101.
  • T. L. Bergman and R. Srinivasan, “Numerical simulation of Soret-induced double diffusion in an initially uniform concentration binary liquid,” Int. J. Heat Mass Transf., vol. 32, no. 4, pp. 679–687, 1989. DOI: 10.1016/0017-9310(89)90215-9.
  • S. Chen, J. Tölke, and M. Krafczyk, “Numerical investigation of double-diffusive (natural) convection in vertical annuluses with opposing temperature and concentration gradients,” Int. J. Heat Fluid Flow, vol. 31, no. 2, pp. 217–226, 2010. DOI: 10.1016/j.ijheatfluidflow.2009.12.013.
  • C. Liao, P. Z. Huang, and Y. N. He, “A decoupled finite element method with different time steps for the nonstationary Darcy-Brinkman problem,” J. Numer. Math., 2019. DOI: 10.1515/jnma-2018-0080.
  • M. Mamou, P. Vasseur, and E. Bilgen, “A Galerkin finite-element study of the onset of double-diffusive convection in an inclined porous enclosure,” Int. J. Heat Mass Transf., vol. 41, no. 11, pp. 1513–1529, 1998. DOI: 10.1016/S0017-9310(97)00216-0.
  • J. Serrano-Arellano, M. Gijn-Rivera, J. M. Riesco-Vila, and F. Elizalde-Blancas, “Numerical study of the double diffusive convection phenomena in a closed cavity with internal CO2 point sources,” Int. J. Heat Mass Transf., vol. 71, pp. 664–674, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.078.
  • Q. Shao, M. Fahs, A. Younes, and A. Makradi, “A highaccurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media,” Numer. Heat Transf. B: Fundam., vol. 69, no. 1, pp. 26–47, 2016. DOI: 10.1080/10407790.2015.1081044.
  • R. March, A. Coutinho, and R. Elias, “Stabilized finite element simulation of double-diffusive natural convection,” Mec. Comput., vol. 29, pp. 7985–8000, 2010.
  • A. Çıbık, M. Demir, and S. Kaya, “A family of second order time stepping methods for the Darcy-Brinkman equations,” J. Math. Anal. Appl., vol. 472, no. 1, pp. 148–175, 2019. DOI: 10.1016/j.jmaa.2018.11.015.
  • F. G. Eroglu, S. Kaya, and L. G. Rebholz, “POD-ROM for the Darcy-Brinkman equations with double-diffusive convection,” J. Numer. Math., vol. 27, no. 3, pp. 123–139, 2019. DOI: 10.1515/jnma-2017-0122.
  • Y. Yang and Y. Jiang, “An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection,” Numer. Algorithms, vol. 78, no. 2, pp. 569–597, 2018. DOI: 10.1007/s11075-017-0389-7.
  • C. Liao and P. Z. Huang, “The modified characteristics finite element method for time dependent Darcy-Brinkman problem,” Eng. Comput., vol. 36, no. 1, pp. 356–376, 2019. DOI: 10.1108/EC-05-2018-0223.
  • A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Math. Comput., vol. 22, no. 104, pp. 745–762, 1968. DOI: 10.1090/S0025-5718-1968-0242392-2.
  • R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd ed. Amsterdam: North-Holland, 1984.
  • X. L. Lu and P. Z. Huang, “A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations,” J. Sci. Comput., vol. 82, pp. 3, 2020.
  • M. A. Olshanskii and A. Reusken, “Grad-div stabilization for Stokes equations,” Math. Comput., vol. 73, no. 248, pp. 1699–1718, 2003. DOI: 10.1090/S0025-5718-03-01629-6.
  • L. P. Franca and T. J. R. Hughes, “Two classes of mixed finite element methods,” Comput. Methods Appl. Mech. Eng., vol. 69, no. 1, pp. 89–129, 1988. DOI: 10.1016/0045-7825(88)90168-5.
  • V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz, “On the divergence constraint in mixed finite element methods for incompressible flows,” SIAM Rev., vol. 59, no. 3, pp. 492–544, 2017. DOI: 10.1137/15M1047696.
  • A. L. Bowers, S. Le. Borne, and L. G. Rebholz, “Error analysis and iterative solvers for Navier-Stokes projection methods with standard and sparse grad-div stabilization,” Comput. Methods Appl. Mech. Eng., vol. 275, pp. 1–19, 2014. DOI: 10.1016/j.cma.2014.02.021.
  • J. de Frutos, B. García-Archilla, and J. Novo, “Fully discrete approximations to the time-dependent Navier–Stokes equations with a projection method in time and grad-div stabilization,” J. Sci. Comput., vol. 80, no. 2, pp. 1330–1368, 2019. DOI: 10.1007/s10915-019-00980-9.
  • T. Zhang, X. Zhao, and P. Huang, “Decoupled two level finite element methods for the steady natural convection problem,” Numer. Algorithms, vol. 68, no. 4, pp. 837–866, 2015. DOI: 10.1007/s11075-014-9874-4.
  • B. Li and W. Sun, “Linearized FE approximations to a nonlinear gradient flow,” SIAM J. Numer. Anal., vol. 52, no. 6, pp. 2623–2646, 2014. DOI: 10.1137/13093769X.
  • R. H. Nochetto, A. J. Salgado, and I. Tomas, “The micropolar Navier–Stokes equations: a priori error analysis,” Math. Models Methods Appl. Sci., vol. 24, no. 7, pp. 1237–1264, 2014. DOI: 10.1142/S0218202514500018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.