Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 4
132
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Acceleration of high-order combined compact finite difference scheme for simulating three-dimensional flow and heat transfer problems in GPUs

ORCID Icon, ORCID Icon & ORCID Icon
Pages 265-287 | Received 18 Jan 2019, Accepted 26 Mar 2019, Published online: 07 Jul 2020

References

  • Message Passing Interface (MPI). Available: http://www.mcs.anl.gov/research/projects/mpi. Accessed: Jan. 18, 2019.
  • OpenMP specification. Available: http://openmp.org/wp/about-openmp/. Accessed: Jan. 18, 2019.
  • G. Borrell, J. A. Sillero, and J. Jiménez, “A code for direct numerical simulation of turbulent boundary layer at high Reynolds number in BG/P supercomputers,” Comput. Fluids, vol. 80, pp. 37–43, 2013. DOI: 10.1016/j.compfluid.2012.07.004.
  • J. Waters and D. B. Carrington, “A parallel large eddy simulation in a finite element projection method for all flow regimes,” Numer. Heat Tranf. A Appl., vol. 70, no. 2, pp. 117–131, 2016. DOI: 10.1080/10407782.2016.1173453.
  • P. Roy, N. K. Anand, and D. Donzis, “A parallel multigrid finite-volume solver on a collocated grid for incompressible Navier-Stokes equations,” Numer. Heat Tranf. B Fundam., vol. 67, no. 5, pp. 376–409, 2015. DOI: 10.1080/10407790.2014.985980.
  • K. David and W. M. W. Hwu, Programming Massive Parallel Processors: A Hand-on Approach. Burlington, MA: Elsevier Press, 2012, pp. 37–43.
  • W. S. Fu, W. H. Wang, C. G. Li, and M. Tsubokura, “An investigation of the unstable phenomena of natural convection in parallel square plates by multi-GPU implementation,” Numer. Heat Tranf. B Fundam., vol. 71, no. 1, pp. 66–83, 2017. DOI: 10.1080/10407790.2016.1257224.
  • Q. Ren and C. L. Chan, “Numerical simulation of a 2D electrothermal pump by lattice Boltzmann method on GPU,” Numer. Heat Tranf. A. Appl., vol. 69, no. 7, pp. 677–693, 2016. DOI: 10.1080/10407782.2015.1090826.
  • K. E. Niemeyer and C.-J. Sung, “Recent progress and challenges in exploiting graphics processors in computational fluid dynamics,” J. Supercomput., vol. 67, no. 2, pp. 528–564, 2014. DOI: 10.1007/s11227-013-1015-7.
  • N. S. C. Kao and T. W. H. Sheu, “Development of a finite element solver for solving three-dimensional incompressible Navier-Stokes solutions on multiple GPU cards,” Comput. Fluids, vol. 167, pp. 285–291, 2018. DOI: 10.1016/j.compfluid.2018.03.033.
  • P. C. Chu and C. Fan, “On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation,” J. Comput. Phys., vol. 140, no. 2, pp. 370–399, 1998. DOI: 10.1006/jcph.1998.5899.
  • P. H. Chiu and T. W. H. Sheu, “On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation,” J. Comput. Phys., vol. 228, no. 10, pp. 3640–3655, 2009. DOI: 10.1016/j.jcp.2009.02.008.
  • C. H. Yu, Y. G. Bhumkar, and T. W. H. Sheu, “Dispersion relation preserving combined compact difference schemes for flow problems,” J. Sci. Comput., vol. 62, no. 2, pp. 482–516, 2015. DOI: 10.1007/s10915-014-9864-7.
  • R. K. S. Liu and T. W. H. Sheu, “A time marching strategy for solving parabolic and elliptic equations with Neumann boundary conditions,” Numer. Heat Tranf. B Fundam., vol. 74, no. 2, pp. 481–497, 2018. DOI: 10.1080/10407790.2018.1517551.
  • T. K. Sengupta, V. Lakshmanan, and V. V. S. N. Vijay, “A new combined stable and dispersion relation preserving compact scheme for non-periodic problems,” J. Comput. Phys., vol. 228, no. 8, pp. 3048–3071, 2009. DOI: 10.1016/j.jcp.2009.01.003.
  • W. Weber, “Uber eine Transfermation der hydrodynamischen,” J. Reine Angew. Math., vol. 68, pp. 286–292, 1868.
  • T. W. H. Sheu and C. H. Yu, “Development of an incompressible Navier-Stokes solver involving symplectic and non-symplectic time integrators,” Numer. Heat Tranf. B. Fundam., vol. 58, no. 4, pp. 262–286, 2010. DOI: 10.1080/10407790.2010.511969.
  • W. Oevel and W. Softoniou, Symplectic Runge-Kutta Scheme: II Classification of Symplectic Method. Germany, Preprint: University of Paderborn, 1997.
  • C. K. W. Tam and J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics,” J. Comput. Phys., vol. 107, no. 2, pp. 262–281, 1993. DOI: 10.1006/jcph.1993.1142.
  • C. H. Yu, Z. Gao, and T. W. H. Sheu, “Development of a symplectic and phase error reducing perturbation finite element advection scheme,” Numer. Heat Tranf. B Fundam., vol. 70, no. 2, pp. 136–151, 2016. DOI: 10.1080/10407790.2015.1097241.
  • T. W. H. Sheu, N. S. C. Kao, P. H. Chiu, and C. S. Lin, “Development of an upwinding scheme through the minimization of modified wavenumber error for the incompressible Navier-Stokes equations,” Numer. Heat Tranf. B. Fundam., vol. 60, no. 3, pp. 179–202, 2011. DOI: 10.1080/10407790.2011.601147.
  • Nvidia. The CuSparse Library. PGI Fortran CUDA library Interfaces, 2018.
  • Nvidia. CUDA C Programming Guide 9.0, 2018.
  • B. P. Pickering, C. W. Jackson, T. R. W. Scogland, W. C. Feng, and C. J. Roy, “Directive-based GPU programming for computational fluid dynamics,” Comput. Fluids, vol. 114, pp. 242–253, 2015. DOI: 10.1016/j.compfluid.2015.03.008.
  • Nvidia. Tesla V100 GPU architecture, 2017.
  • D. C. Lo, K. Murugesan, and D. L. Yang, “Numerical solution of three-dimensional velocity-vorticity Navier-Stokes equations by finite difference method,” Int. J. Numer. Methods Fluids, vol. 47, no. 12, pp. 1469–1487, 2005. DOI: 10.1002/fld.822.
  • K. L. Wong and A. J. Baker, “A 3D incompressible Navier-Stokes velocity-vorticity weak form finite element algorithm,” Int. J. Numer. Meth. Fluids, vol. 38, no. 2, pp. 99–123, 2002. DOI: 10.1002/fld.204.
  • R. J. A. Janssen, R. A. W. M. Henkes, and C. J. Hoogendoorn, “Transition to time-periodicity of a natural-convection flow in a 3D differentially heated cavity,” Int. J. Heat Mass Transf., vol. 36, no. 11, pp. 2927–2940, 1993. DOI: 10.1016/0017-9310(93)90111-I.
  • R. A. W. M. Henkes, and P. Le Quéré, “Three-dimensional transition of natural-convection flows,” J. Fluid Mech., vol. 319, no. 1, pp. 281–303, 1996. DOI: 10.1017/S0022112096007343.
  • E. Tric, G. Labrosse, and M. Betrouni, “A first incursion into the 3D structure of natural convection of air in a differentially heated cubic cavity, from accurate numerical solution,” Int. J. Heat Mass Transf., vol. 43, no. 21, pp. 4043–4056, 2000. DOI: 10.1016/S0017-9310(00)00037-5.
  • T. W. H. Sheu and R. K. Lin, “Three-dimensional bifurcation in a cubic cavity due to buoyancy-driven natural convection,” Int. J. Heat Mass Transf., vol. 54, no. 1-3, pp. 447–467, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.