Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 5
142
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Avoiding under-relaxations in SIMPLE algorithm

Pages 310-329 | Received 23 May 2020, Accepted 19 Jun 2020, Published online: 07 Jul 2020

References

  • S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer, vol. 15, no. 10, pp. 1787–1806, 1972. DOI: 10.1016/0017-9310(72)90054-3.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Washington, DC: Hemisphere, 1980.
  • S. V. Patankar, “A calculation procedure for two-dimensional elliptic situations,” Numer. Heat Transfer, vol. 4, no. 4, pp. 409–425, 1981. DOI: 10.1080/01495728108961801.
  • G. D. Raithby and G. E. Schneider, “Numerical solution of problems in incompressible fluid flow: treatment of the velocity pressure coupling,” Numer. Heat Transfer, vol. 2, no. 4, pp. 417–440, 1979. DOI: 10.1080/10407787908913423.
  • J. P. van Doormaal and G. D. Raithby, “Enhancement of the SIMPLE method for predicting incompressible fluid flow,” Numer. Heat Transfer, vol. 7, no. 2, pp. 147–163, 1984. DOI: 10.1080/10407798408546946.
  • D. B. Spalding, “A general purpose computer program for multi-dimensional one-and-two phase flow,” Math. Comput. Simul., vol. 23, no. 3, pp. 267–276, 1981. DOI: 10.1016/0378-4754(81)90083-5.
  • N. C. Markatos and K. A. Pericleous, “Laminar and turbulent natural convection in an enclosed cavity,” Int. J. Heat Mass Transfer, vol. 27, no. 5, pp. 755–772, 1984. DOI: 10.1016/0017-9310(84)90145-5.
  • R. I. Issa, A. D. Gosman, and A. P. Watkins, “The computation of compressible and incompressible recirculating flows by a non-iterative scheme,” J. Comput. Phys., vol. 62, no. 1, pp. 66–82, 1986. DOI: 10.1016/0021-9991(86)90100-2.
  • R. I. Issa, “Solution of the implicit discretized fluid flow equations by operator splitting,” J. Comput. Phys., vol. 62, no. 1, pp. 40–65, 1986. DOI: 10.1016/0021-9991(86)90099-9.
  • Q. U. ZhiGuo and H. YaLin, “A new fully implicit algorithm for solving flow and heat transfer problems(A),” J. Eng. Thermophys., vol. 26, no. 1, pp. 125–127, 2005.
  • Q. U. ZhiGuo and H. YaLin, “A new fully implicit algorithm for solving flow and heat transfer problems(B),” J. Eng. Thermophys., vol. 26, no. 1, pp. 128–130, 2005.
  • Y. P. Cheng, T. S. Lee, H. T. Low, and W. Q. Tao, “Improvement of SIMPLER algorithm for incompressible flow on collocated grid system,” Numer. Heat Transfer B, vol. 51, no. 5, pp. 463–486, 2007. DOI: 10.1080/10407790600939767.
  • M. M. Rahman and T. Siikonen, “An improved SIMPLE method on a collocated grid,” Numer. Heat Transfer B, vol. 38, pp. 177–201, 2000.
  • M. M. Rahman, T. Siikonen, and A. Miettinen, “A pressure correction method for solving fluid flow problems on a collocated grid,” Numer. Heat Transfer, Part B: Fundam., vol. 32, no. 1, pp. 63–84, 1997. DOI: 10.1080/10407799708914999.
  • M. M. Rahman, A. Miettinen, and T. Siikonen, “Modified SIMPLE formulation on a collocated grid with an assessment of the simplified QUICK scheme,” Numer. Heat Transfer B, vol. 30, no. 3, pp. 291–314, 1996. DOI: 10.1080/10407799608915084.
  • X. Wen and D. B. Ingham, “A new method for accelerating the rate of convergence of simple-like algorithm,” Int. J. Numer. Meth. Fluids, vol. 17, no. 5, pp. 385–400, 1993. DOI: 10.1002/fld.1650170504.
  • P. Johansson and L. Davidson, “Modified collocated SIMPLEC algorithm applied to buoyancy-affected turbulent flow using a multigrid solution procedure,” Numer. Heat Transfer B, vol. 28, no. 1, pp. 39–57, 1995. DOI: 10.1080/10407799508928820.
  • S. W. Armfield, “Finite difference solutions of the Navier-Stokes equations on staggered and nonstaggered grids,” Comput. Fluids, vol. 20, no. 1, pp. 1–17, 1991. DOI: 10.1016/0045-7930(91)90023-B.
  • C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation,” AIAA J., vol. 21, no. 11, pp. 1525–1532, 1983. DOI: 10.2514/3.8284.
  • M. Peric, “Analysis of pressure velocity coupling on nonorthogonal grids,” Numer. Heat Transfer B, vol. 17, pp. 63–82, 1990.
  • S. Acharya and F. Moukalled, “Improvements to incompressible flow calculation on a non-staggered curvilinear grid,” Numer. Heat Transfer, Part B, vol. 15, no. 2, pp. 131–152, 1989. DOI: 10.1080/10407798908944897.
  • R. H. Yen and C. H. Liu, “Enhancement of the SIMPLE algorithm by an additional explicit corrector step,” Numer. Heat Transfer, Part B, vol. 24, no. 1, pp. 127–141, 1993. DOI: 10.1080/10407799308955885.
  • M. M. Rahman and T. Siikonen, “A dual-dissipation scheme for pressure-velocity coupling,” Numer. Heat Transfer, Part B, vol. 42, no. 3, pp. 231–242, 2002. DOI: 10.1080/10407790260233547.
  • A. Castrejon and D. B. Spalding, “Experimental and theoretical study of transient free-convection flow between horizontal convection cylinders,” Int. J. Heat Mass Transfer, vol. 31, no. 2, pp. 273–284, 1988. DOI: 10.1016/0017-9310(88)90010-5.
  • L. Fuchs and N. Tillmark, “Numerical and experimental study of driven flow in a polar cavity,” Int. J. Numer. Meth. Fluids, vol. 5, no. 4, pp. 311–329, 1985. DOI: 10.1002/fld.1650050403.
  • T. H. Kuehn and R. J. Goldstein, “Experimental and theoretical study of natural convection in the annulus between horizontal convection cylinders,” J. Fluid Mech., vol. 74, no. 4, pp. 695–719, 1976. DOI: 10.1017/S0022112076002012.
  • W. A. Wrobel, E. Fornalik-Wajs, and J. S. Szmyd, “Analysis of the influence of a strong magnetic field gradient on convection process of paramagnetic fluid in the annulus between horizontal concentric cylinders,” J. Phys. Conf. Ser., vol. 395, pp. 1–8, 2012. DOI: 10.1088/1742-6596/395/1/012124.
  • W. Shyy, “A study of finite difference approximations to steady-state convection dominated flow problems,” J. Comput. Phys., vol. 57, no. 3, pp. 415–438, 1985. DOI: 10.1016/0021-9991(85)90188-3.
  • J. Qin, H. Pan, Z. Zhu, X. Tian, and M. M. Rahman, “Assessments of SIMPLE and ASIMPLE algorithms based on buoyancy-driven cavity flows,” Int. J. Innov. Sci. Res. Technol., vol. 5, no. 3, pp. 700–714, 2020.
  • W. K. Anderson, J. L. Thomas, and B. Van Leer, “Comparison of finite volume flux vector splittings for the Euler equations,” AIAA J., vol. 24, pp. 649–664, 1983.
  • A. J. Chorin, “A numerical method for solving incompressible viscous flow problems,” J. Comput. Phys., vol. 2, no. 1, pp. 12–26, 1967. DOI: 10.1016/0021-9991(67)90037-X.
  • D. C. Wan, B. S. V. Patnaik, and G. W. Wei, “A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution,” Numer. Heat Transfer B, vol. 40, pp. 199–228, 2001.
  • P. Le Quere and T. Alziary de Roquefort, “Computation on natural convection in two-dimensional cavities with Chebyshev polynomial,” J. Comput. Phys., vol. 57, no. 2, pp. 210–228, 1985. DOI: 10.1016/0021-9991(85)90043-9.
  • A. G. Malan, R. W. Lewis, and P. Nithiarasu, “An improved unsteady, unstructured, artificial compressibility, finite volume method for viscous incompressible flows: Part II. application,” Int. J. Numer. Meth. Eng., vol. 54, no. 5, pp. 715–729, 2002. DOI: 10.1002/nme.443.
  • N. Massarotti, F. Arpino, R. W. Lewis, and P. Nithiarasu, “Explicit and semi-implicit CBS procedures for incompressible viscous flows,” Int. J. Numer. Meth. Eng., vol. 66, no. 10, pp. 1618–1640, 2006. DOI: 10.1002/nme.1700.
  • C. F. Kettleborough, S. R. Husain, and C. Prakash, “Solution of fluid flow problems with the vorticity-stream function formulation and the control volume based finite element method,” Numer. Heat Transfer B, vol. 16, no. 1, pp. 31–58, 1990. DOI: 10.1080/10407798908944927.
  • F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed. New York: Wiley, 1996.
  • M. M. Rahman and M. J. Lampinen, “Numerical Study of Natural Convection from a Vertical Surface Due to Combined Buoyancies,” Numer. Heat Transfer A, vol. 28, no. 4, pp. 409–429, 1995. DOI: 10.1080/10407789508913753.
  • X. Yang and S.-C. Kong, “Numerical study of natural convection in a horizontal concentric annulus using smoothed particle hydrodynamics,” Eng. Anal. Bound. Elem., vol. 102, pp. 11–20, 2019. DOI: 10.1016/j.enganabound.2019.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.