Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 6
100
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A finite volume method preserving maximum principle for steady heat conduction equations with modified Anderson acceleration

, &
Pages 412-438 | Received 03 Jun 2020, Accepted 19 Jun 2020, Published online: 13 Jul 2020

References

  • E. Bertolazzi and G. Manzini, “A second-order maximum principle preserving finite volume method for steady convection-diffusion problems,” SIAM J. Numer. Anal., vol. 43, no. 5, pp. 2172–2199, 2005. DOI: 10.1137/040607071.
  • J. Droniou and C. L. Potier, “Construction and convergence study of schemes preserving the elliptic local maximum principle,” SIAM J. Numer. Anal., vol. 49, no. 2, pp. 459–490, 2011. DOI: 10.1137/090770849.
  • C. Le Potier, “A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators,” Int. J. Finite, vol. 6, pp. 1–20, 2009.
  • K. Lipnikov, D. Svyatskiy, and Y. Vassilevski, “Minimal stencil finite volume scheme with the discrete maximum principle,” Russian J. Numer. Anal. Math. Model., vol. 27, no. 4, pp. 369–385, 2012. DOI: 10.1515/rnam-2012-0020.
  • Z. Sheng and G. Yuan, “The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes,” J. Comput. Phys., vol. 230, no. 7, pp. 2588–2604, 2011. DOI: 10.1016/j.jcp.2010.12.037.
  • Z. Sheng and G. Yuan, “Construction of nonlinear weighted method for finite volume schemes preserving maximum principle,” SIAM J. Sci. Comput., vol. 40, no. 1, pp. A607–628, 2018. DOI: 10.1137/16M1098000.
  • R. Herbin and F. Hubert, “Benchmark on discretization schemes for anisotropic diffusion problems on general grids,” in Finite Volumes for Complex Applications V, volume V, London: ISTE, 2008, pp. 659–692. DOI: 10.1007/978-3-642-20671-9_89.
  • J. M. Nordbotten, I. Aavatsmark, and G. T. Eigestad, “Monotonicity of control volume methods,” Numer. Math., vol. 106, no. 2, pp. 255–288, 2007. DOI: 10.1007/s00211-006-0060-z.
  • E. Burman and A. Ern, “Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes, Comptes Rendus de l’ Academie des,” Sciences Serie I, vol. 338, no. 8, pp. 641–646, 2004. DOI: 10.1016/j.crma.2004.02.010.
  • R. Liska and M. Shashkov, “Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems,” Commun. Comput. Phys., vol. 3, pp. 852–877, 2008.
  • H-r Fang and Y. Saad, “Two classes of multisecant methods for nonlinear acceleration,” Numer. Linear Algebra Appl., vol. 16, no. 3, pp. 197–221, 2009. DOI: 10.1002/nla.617.
  • T. Eirola and O. Nevanlinna, “Accelerating with rank-one updates,” Linear Algebra Appl., vol. 121, pp. 511–520, 1989. DOI: 10.1016/0024-3795(89)90719-2.
  • G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., vol. 6, no. 1, pp. 15–50, 1996a. DOI: 10.1016/0927-0256(96)00008-0.
  • G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev., B Condens. Matter, vol. 54, no. 16, pp. 11169–11186, 1996b. DOI: 10.1103/physrevb.54.11169.
  • C. Le Bris, “Computational chemistry from the perspective of numerical analysis,” Acta Numer., vol. 14, pp. 363–444, 2005. DOI: 10.1017/S096249290400025X.
  • C. Yang, J. C. Meza, B. Lee and L-w Wang, “KSSOLV-A MATLAB Toolbox for Solving the Kohn-Sham Equations,” ACM Trans. Math. Softw., vol. 36, no. 2, pp. 1–31, 2009. DOI: 10.1145/1499096.1499099.
  • D. G. Anderson, “Iterative procedures for nonlinear integral equations,” J. ACM, vol. 12, no. 4, pp. 547–560, 1965. DOI: 10.1145/321296.321305.
  • H. F. Walker and P. Ni, “Anderson acceleration for fixed-point iterations,” SIAM J. Numer. Anal., vol. 49, no. 4, pp. 1715–1735, 2011. DOI: 10.1137/10078356X.
  • A. Toth and C. T. Kelley, “Convergence analysis for Anderson acceleration,” SIAM J. Numer. Anal., vol. 53, no. 2, pp. 805–819, 2015. DOI: 10.1137/130919398.
  • H. An, X. Jia, and H. F. Walker, “Anderson acceleration and application to the three-temperature energy equations,” J. Comput. Phys., vol. 347, pp. 1–19, 2017. DOI: 10.1016/j.jcp.2017.06.031.
  • H. F. Walker, Anderson acceleration: Algorithms and implementations, Technical Report Worcester Polytechnic Institute Mathematical Sciences, Department Research Report MS-6-15-50, 2011.
  • K. Lipnikov, D. Svyatskiy and Y. Vassilevski, “Anderson acceleration for nonlinear finite volume scheme for advection-diffusion problems,” SIAM J. Sci. Comput., vol. 35, no. 2, pp. A1120–A1136, 2013. DOI: 10.1137/120867846.
  • J. Willert, W. T. Taitano and D. Knoll, “Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems,” J. Comput. Phys., vol. 273, pp. 278–286, 2014. DOI: 10.1016/j.jcp.2014.05.015.
  • Z. Sheng, M. Thiriet and F. Hecht, “An efficient numerical method for the equations of steady and unsteady flows of homogeneous incompressible Newtonian fluid,” J. Comput. Phys., vol. 230, no. 3, pp. 551–571, 2011. DOI: 10.1016/j.jcp.2010.10.002.
  • P. A. Lott, H. F. Walker, C. S. Woodward and U. M. Yang, “An accelerated Picard method for nonlinear systems related to variably saturated flow,” Adv. Water Resoruc., vol. 38, pp. 92–101, 2012. DOI: 10.1016/j.advwatres.2011.12.013.
  • G. Yuan and Z. Sheng, “Monotone finite volume schemes for diffusion equations on polygonal meshes,” J. Comput. Phys., vol. 227, no. 12, pp. 6288–6312, 2008. DOI: 10.1016/j.jcp.2008.03.007.
  • X. Blanc and E. Labourasse, “A positive scheme for diffusion problems on deformed meshes,” Z. Angew. Math. Mech, vol. 96, no. 6, pp. 660–680, 2016. DOI: 10.1002/zamm.201400234.
  • G. Yuan and Y. Yu, “Existence of solution of a finite volume scheme preserving maximum principle for diffusion equations,” Numer. Methods Partial Differ. Eq., vol. 34, no. 1, pp. 80–96, 2018. DOI: 10.1002/num.22184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.