Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 2
88
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A global approach for the time-dependent solution of natural convection in a tilted porous cavity

ORCID Icon, &
Pages 83-112 | Received 22 Feb 2020, Accepted 19 Jul 2020, Published online: 11 Aug 2020

References

  • W. J. Minkowycz, Handbook of Numerical Heat Transfer, 2nd ed. NY, USA: Wiley, 2009.
  • I. Pop and D. B. Ingham, Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Oxford, UK: Elsevier Science & Technology Books, 2001.
  • D. B. Ingham and I. Pop, Transport Phenomena in Porous Media, vol. iii. Oxford: Elsevier, 2005.
  • D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed. New York: Springer-Verlag, 2006.
  • N. H. Saeid and I. Pop, “Natural convection from a discrete heater in a square cavity filled with a porous medium,” J. Por. Media, vol. 8, no. 1, pp. 55–63, 2005. DOI: 10.1615/JPorMedia.v8.i1.50.
  • B. Wen and G. P. Chini, “On moderate-Rayleigh-Number convection in an inclined porous layer,” Fluids, vol. 4, no. 2, pp. 101–101, 2019. DOI: 10.3390/fluids4020101.
  • V. M. Rathnam, P. Biswal and T. Basak, “Analysis of entropy generation during natural convection within entrapped porous triangular cavities during hot or cold fluid disposal,” Numer. Heat Transfer, Part A: Appl., vol. 69, no. 9, pp. 931–956, 2016. DOI: 10.1080/10407782.2015.1109362.
  • P. Biswal and T. Basak, “Analysis of entropy generation during natural convection in porous enclosures with curved surfaces,” Numer. Heat Transfer Appl., vol. 71, no. 1, pp. 1–27, 2016.
  • F. Wu, G. Wang and W. J. Zhou, “A thermal non-equilibrium approach to natural convection in a square enclosure due to the partially cooled sidewalls of the enclosure,” Numer. Heat Transfer, Part A, vol. 67, no. 7, pp. 771–790, 2015. DOI: 10.1080/10407782.2014.949189.
  • O. Aydin, A. Unal and T. Ayhan, “A numerical study on Buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls,” Numer. Heat Transf. Part A, vol. 36, pp. 585–599, 1999.
  • H. Zargartalebi, et al., “Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model,” Numer. Heat Transfer, Part A, vol. 70, no. 4, pp. 432–445, 2016. DOI: 10.1080/10407782.2016.1173483.
  • V. Prasad and A. Tuntomo, “Inertia effects on natural convection in a vertical porous cavity,” Numer. Heat Transfer, Part B: Fundam., vol. 11, no. 3, pp. 295–320, 1987. DOI: 10.1080/10407788708913556.
  • M. Fahs, A. Younes and A. Makradi, “A reference benchmark solution for free convection in a square cavity filled with a heterogeneous porous medium,” Numer. Heat Transfer, Part B, vol. 67, no. 5, pp. 437–462, 2015. DOI: 10.1080/10407790.2014.977183.
  • M. Fahs, A. Younes and T. A. Mara, “A new benchmark semi-analytical solution for density-driven flow in porous media,” Adv. Water Resources, vol. 70, pp. 24–35, 2014. DOI: 10.1016/j.advwatres.2014.04.013.
  • A. Younes and M. Fahs, “Fahs: A semi-analytical solution for the reactive Henry saltwater intrusion problem,” Water Air Soil Pollut., vol. 224, no. 11, pp. 1779, 2013. DOI: 10.1007/s11270-013-1779-7.
  • M. Fahs and A. Younes, “A high accurate Fourier-Galerkin solution for Buoyancy-driven flow in a square cavity,” J. Numer. Heat Transfer, Part B, vol. 65, no. 6, pp. 495–517, 2014. DOI: 10.1080/10407790.2014.884832.
  • Q. Shao, M. Fahs, A. Younes and A. Makradi, “A high-accurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media,” Numer. Heat Transfer, Part B, vol. 69, no. 1, pp. 26–47, 2016. DOI: 10.1080/10407790.2015.1081044.
  • B. Costa, “Spectral methods for partial differential equations,” Cubo Math. J., vol. 6, pp. 1–32, 2004.
  • D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations, chap. 4. New York: Springer Science, 2009.
  • F. Amin and A. Malek, “Spectral Fourier–Galerkin benchmark solution for natural convection in an inclined saturated porous medium,” Numer. Heat Transfer, Part B: Fundam., vol. 71, no. 4, pp. 372–395, 2017. DOI: 10.1080/10407790.2016.1265300.
  • A. C. Baytas and I. Pop, “Free convection in oblique enclosures filled with a porous medium,” Int. J. Heat Mass Transfer, vol. 42, no. 6, pp. 1047–1057, 1999.
  • A. Kumar, T. Basak, A. Nag and S. Roy, “Heatlines and thermal management analysis for natural convection within inclined porous square cavities,” Int. J. Heat Mass Transfer, vol. 87, pp. 583–597, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.043.
  • P. Biswal, A. Nag and T. Basak, “Analysis of thermal management during natural convection within porous tilted square cavities via heatline and entropy generation,” Int. J. Mech. Sci., vol. 115–116, pp. 596–615, 2016. DOI: 10.1016/j.ijmecsci.2016.07.011.
  • N. H. Saeid and I. Pop, “Transient free convection in a square cavity filled with a porous medium,” Int. J. Heat Mass Transfer, vol. 47, no. 8–9, pp. 1917–1924, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.014.
  • N. H. Saeid and Y. Yaacob, “Natural convection in a square cavity with spatial sidewall temperature variation,” Numer. Heat Transfer. A-Appl., vol. 49, no. 7, pp. 683–697, 2006. DOI: 10.1080/10407780500359943.
  • B. Abourida, M. Hasnaoui and S. Douamna, “Natural convection in a square cavity with vertical boundaries submitted to periodic temperatures,” Rev. Gen. Therm., vol. 37, no. 9, pp. 788–800, 1998. DOI: 10.1016/S0035-3159(98)80005-6.
  • A. Raji, M. Hasnaoui, M. Firdaouss and C. Ouardi, “Natural convection heat transfer enhancement in a square cavity periodically cooled from above,” Numer. Heat Transfer, Part A - Appl., vol. 63, no. 7, pp. 511–533, 2013. DOI: 10.1080/10407782.2013.733248.
  • V. M. Rathnam, M. Roy and T. Basak, “Analysis of entropy generation during natural convection in tilted triangular enclosures with various base angles,” Numer. Heat Transfer, Part A, vol. 69, no. 12, pp. 1332–1354, 2016. DOI: 10.1080/10407782.2016.1139976.
  • A. C. Baytas, “Entropy generation for natural convection in an inclined porous cavity,” Int. J. Heat Mass Tranf., vol. 43, pp. 12, 2000.
  • E. V. Kalabin, M. V. Kanashina and P. T. Zubkov, “Natural-convection heat transfer in a square cavity with time varying side-wall temperature,” Numer. Heat Transfer A, vol. 47, no. 6, pp. 621–631, 2005. DOI: 10.1080/10407780590896853.
  • M. Rahman and M. A. R. Sharif, “Numerical study of laminar natural convection in inclined rectangular enclosures of various aspect ratios,” Numer. Heat Transf. Part A, vol. 44, no. 4, pp. 355–373, 2003. DOI: 10.1080/713838233.
  • P. Y. Tzeng, C. Y. Soong and T. S. Skeu, “Numerical investigation of transient flow-mode transition of laminar natural convection in an inclined enclosure,” Numer. Heat Transfer, Part A: Appl., vol. 31, no. 2, pp. 193–206, 1997. DOI: 10.1080/10407789708914032.
  • G. Wang, Q. W. Wang, M. Zeng and H. Ozoe, “Natural convection heat transfer in an inclined porous cavity under time-periodic boundary conditions with positive/negative inclined angles,” J. Por. Media, vol. 11, no. 6, pp. 541–555, 2008. DOI: 10.1615/JPorMedia.v11.i6.30.
  • A. Fahs, Z. Zakeri and A. Wanko, “Spectral time-dependent solutions for Darcy model of natural convection in a porous enclosure,” Numer. Heat Transfer, Part B, vol. 76, no. 6, pp. 366–386, 2019.
  • C. Bernardi, S. Maarouf and D. Yakoubi, “Spectral discretization of Darcy’s equations coupled with the heat equation,” IMA J. Numer. Anal., vol. 36, no. 3, pp. 1193–1216, 2016. DOI: 10.1093/imanum/drv047.
  • C. Bernardi, S. Dib, V. Girault, F. Hecht, F. Murat and T. Sayah, “Finite element method for Darcy’s problem coupled with the heat equation,” Numer. Math., vol. 139, no. 2, pp. 315–348, 2018. DOI: 10.1007/s00211-017-0938-y.
  • C. Bernardi, Y. Maday, and F. Rapetti, Discrétisations Variationnelles de Problèmes Aux Limites Elliptiques, Mathématiques et Applications. Berlin, Heidelberg: Springer, 2004.
  • C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods: Fundamentals in Single Domains, chap. 3. New York: Springer-Verlag, 2006.
  • R. Peyret, Spectral Methods for Incompressible Viscous Flow. New York, NY, USA: Springer, 2002.
  • J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. New York, NY, USA: Dover, 2000.
  • M. Christou and C. I. Christov, “Fourier–Galerkin method for 2D solutions of Boussinesq equation,” Math. Comput. Simul., vol. 74, no. 2–3, pp. 82–92, 2007. DOI: 10.1016/j.matcom.2006.10.002.
  • J. R. Cash and A. H. Karp, “A variable order Runge-Kutta method for value problems with rapidly varying right-hand sides,” ACM Trans. Math. Softw., vol. 16, no. 3, pp. 201–222, 1990.
  • N. Nikitin, “Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations,” Int. J. Numer. Meth. Fluids, vol. 51, no. 2, pp. 221–233, 2006. DOI: 10.1002/fld.1122.
  • M. Mehra, N. Patel and R. Kumar, “Comparison between different numerical methods for discretization of PDEs‐a short review,” AIP Conf. Proc., vol. 1281, pp. 599, 2010.
  • K. L. Walker and G. M. Homsy, “Convection in a porous cavity,” J. Fluid Mech., vol. 87, no. 03, pp. 449–474, 1978. DOI: 10.1017/S0022112078001718.
  • A. Bejan, “On the boundary layer regime in a vertical enclosure filled with a porous medium,” Lett. Heat Mass Transf., vol. 6, no. 2, pp. 93–102, 1979. DOI: 10.1016/0094-4548(79)90001-8.
  • R. J. Gross, M. R. Bear and C. E. Hickox, “The application of flux corrected transport (FCT) to high Rayleigh number natural convection in a porous medium,” Proceedings of 8th International on Heat Transfer Conference, San Francisco, CA, 1986.
  • D. M. Manole and J. L. Lage, “Numerical benchmark results for natural convection in a porous medium cavity,” Heat Mass Transfer Porous Media, ASME Conf., HTD, vol. 216, pp. 55–60, 1992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.