Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 79, 2021 - Issue 5-6
987
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

An LBM-based investigation of thermal buoyancy and arrangement angle on flow characteristics and heat transfer over four heated square cylinders

, ORCID Icon, ORCID Icon &
Pages 278-301 | Received 01 Dec 2020, Accepted 10 May 2021, Published online: 02 Jun 2021

References

  • M. M. Alam, Y. Zhou, and X. W. Wang, “The wake of two side-by-side square cylinders,” J. Fluid Mech., vol. 669, pp. 432–471, 2011. DOI: 10.1017/S0022112010005288.
  • M. Kapitz, C. Teigeler, R. Wagner, C. Helcig, and S. A. D. Wiesche, “Experimental study of the influence of the Prandtl number on the convective heat transfer from a square cylinder,” Int. J. Heat Mass Transf., vol. 120, pp. 471–480, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.032.
  • A. Sohankar, M. Abbasi, M. M. Ahmadabadi, M. M. Alam, and F. Zafar, “Experimental study of the flow around two finite square cylinders,” Arch. Mech., vol. 70, pp. 457–480, 2018. DOI: 10.24423/aom.2965.
  • R. Ali and N. Hasan, “Steady and unsteady flow regimes in two-dimensional mixed convective flow of air past a heated square cylinder,” Int. J. Mech. Sci., vol. 175, p. 105533, 2020. DOI: 10.1016/j.ijmecsci.2020.105533.
  • D. Chatterjee and G. Biswas, “The effects of Reynolds and Prandtl numbers on flow and heat transfer across tandem square cylinders in the steady flow regime,” Numer. Heat Transf. A - Appl,. vol. 59, no. 6, pp. 421–437, 2011. DOI: 10.1080/10407782.2011.552374.
  • M. A. Moussaoui, A. Mezrhab, and H. Naji, “A computation of flow and heat transfer past three heated cylinders in a vee shape by a double distribution MRT thermal lattice Boltzmann model,” Int. J. Therm. Sci., vol. 50, no. 8, pp. 1532–1542, 2011. DOI: 10.1016/j.ijthermalsci.2011.03.011.
  • Y. Q. Zheng, G. N. Li, W. W. Guo, and C. Dong, “Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature,” Heat Mass Transf., vol. 53, no. 9, pp. 2975–2986, 2017. DOI: 10.1007/s00231-017-2043-2.
  • A. Sanyal and A. Dhiman, “Wake interactions in a fluid flow past a pair of side-by-side square cylinders in presence of mixed convection,” Phys. Fluids, vol. 29, no. 10, p. 103602, 2017. DOI: 10.1063/1.5005118.
  • A. Sanyal and A. Dhiman, “Effect of thermal buoyancy on a fluid flowing past a pair of side-by-side square bluff-bodies in a low-Reynolds number flow regime,” Phys. Fluids, vol. 30, no. 6, p. 063603, 2018. DOI: 10.1063/1.5025652.
  • A. E. F. Monfared, A. Sarrafi, S. Jafari, and M. Schaffie, “Thermal flux simulations by lattice Boltzmann method; investigation of high Richardson number cross flows over tandem square cylinders,” Int. J. Heat Mass Transf., vol. 86, pp. 563–580, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.011.
  • S. Biswas, P. Sharma, B. Mondal, and G. Biswas, “Analysis of mixed convective heat transfer in a ribbed channel using the lattice Boltzmann method,” Numer. Heat Transf. A – Appl., vol. 68, no. 1, pp. 75–98, 2015. DOI: 10.1080/10407782.2014.965095.
  • D. Chatterjee and S. Amiroudine, “Two-dimensional mixed convection heat transfer from confined tandem square cylinders in cross-flow at low Reynolds numbers,” Int. Commun. Heat Mass Transf., vol. 37, no. 1, pp. 7–16, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.10.007.
  • D. Chatterjee and B. Mondal, “Mixed convection heat transfer from tandem square cylinders for various gap to size ratios,” Numer. Heat Transf. A – Appl., vol. 63, no. 2, pp. 101–119, 2013. DOI: 10.1080/10407782.2012.725007.
  • R. N. Yuan, M. X. Wu, and Z. Huang, “Steady mixed convective flow and heat transfer from tandem square cylinders in a horizontal channel,” Numer. Heat Transf. A – Appl., vol. 71, no. 10, pp. 1023–1033, 2017. DOI: 10.1080/10407782.2017.1330921.
  • K. Lam and S. C. Lo, “A visualization study of cross-flow around four cylinders in a square configuration,” J. Fluids Struct., vol. 6, no. 1, pp. 109–131, 1992. DOI: 10.1016/0889-9746(92)90058-B.
  • K. Lam and X. Fang, “The effect of interference of four equispaced cylinders in cross flow on pressure and force coefficients,” J. Fluids Struct., vol. 9, no. 2, pp. 195–214, 1995. DOI: 10.1006/jfls.1995.1010.
  • K. Lam, J. Y. Li, K. T. Chan, and R. M. C. So, “Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number,” J. Fluids Struct., vol. 17, no. 5, pp. 665–679, 2003. DOI: 10.1016/S0889-9746(03)00005-7.
  • K. Lam, J. Y. Li, and R. M. C. So, “Force coefficients and Strouhal numbers of four cylinders in cross flow,” J. Fluids Struct., vol. 18, no. 3–4, pp. 305–324, 2003. DOI: 10.1016/j.jfluidstructs.2003.07.008.
  • M. Y. Liu, L. F. Xiao, and L. J. Yang, “Experimental investigation of flow characteristics around flow square-cylinder arrays at subcritical Reynolds numbers,” Int. J. Nav. Archit. Ocean Eng., vol. 7, no. 5, pp. 906–919, 2015. DOI: 10.1515/ijnaoe-2015-0063.
  • E. H. Wang, W. H. Xu, Y. Yu, L. D. Zhou, and A. Incecik, “Flow-induced vibrations of three and four long flexible cylinders in tandem arrangement: An experimental study,” Ocean Eng., vol. 178, pp. 170–184, 2019. DOI: 10.1016/j.oceaneng.2019.02.053.
  • W. H. Xu, S. H. Zhang, B. Liu, E. H. Wang, and Y. Bai, “An experimental study on flow-induced vibration of three and four side-by-side long flexile cylinders,” Ocean Eng., vol. 169, pp. 492–510, 2018. DOI: 10.1016/j.oceaneng.2018.09.038.
  • W. S. Abbasi, U.-I. Shams, S. C. Saha, Y. T. Gu, and Z. C. Ying, “Effect of Reynolds numbers on flow past four square cylinders in an in-line square configuration for different gap spacings,” J. Mech. Sci. Technol., vol. 28, pp. 539–552, 2014. DOI: 10.1007/s12206-013-1121-8.
  • Y. Y. Gao, K. Yang, B. F. Zhang, K. Y. Cheng, and X. P. Chen, “Numerical investigation on vortex-induced vibrations of four circular cylinders in a square configuration,” Ocean Eng., vol. 175, pp. 223–240, 2019. DOI: 10.1016/j.oceaneng.2019.02.012.
  • Y. Kahil, S. Benhamadouche, A. S. Berrouk, and I. Afgan, “Simulation of subcritical-Reynolds -number flow around four cylinders in square arrangement configuration using LES,” Eur. J. Mech. B - Fluids, vol. 74, pp. 111–122, 2019. DOI: 10.1016/j.euromechflu.2018.11.008.
  • J. A. Esfahani and A. V. B. Hagh, “LB simulation of heat transfer in flow past a square unit of four isothermal cylinders,” C. R. Mec., vol. 340, no. 7, pp. 526–535, 2012. DOI: 10.1016/j.crme.2012.03.011.
  • Y. H. Qian, D. D’Humières, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” Europhys. Lett., vol. 17, no. 6, pp. 479–484, 1992. DOI: 10.1209/0295-5075/17/6/001.
  • P. J. Dellar, “Incompressible limits of lattice Boltzmann equations using multiple relaxation times,” J. Comput. Phys., vol. 190, no. 2, pp. 351–370, 2003. DOI: 10.1016/S0021-9991(03)00279-1.
  • Q. S. Zou and X. Y. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids, vol. 9, no. 6, pp. 1591–1598, 1997. DOI: 10.1063/1.869307.
  • A. A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. Springer, New York, 2011.
  • R. W. Mei, D. Z. Yu, W. Shyy, and L. S. Luo, “Force evaluation in the lattice Boltzmann method involving curved geometry,” Phys. Rev. E, vol. 65, no. 4, p. 041023, 2002. DOI: 10.1103/PhysRevE.65.041203.
  • H. B. Li, X. Y. Lu, H. P. Fang, and Y. H. Qian, “Force evaluations in lattice Boltzmann simulations with moving boundaries in two dimensions,” Phys. Rev. E, vol. 70, p. 026701, 2002. DOI: 10.1103/PhysRevE.70.026701.