Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 4
148
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Onset of stability and heat transfer by Rayleigh-Bénard magnetoconvection with variable viscosity effect using Ginzburg-Landau model: Effect of thermal/gravity modulation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 176-191 | Received 13 Sep 2022, Accepted 24 Nov 2022, Published online: 14 Feb 2023

References

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London, 1961,
  • S. Aniss, J. P. Brancher and M. Souhar, “Asymptotic study and weakly non-linear analysis at the onset of Rayleigh–Bénard convection in Hele-Shaw cell,” Phys. Fluid., vol. 7, no. 5, pp. 926–934, 1995. DOI: 10.1063/1.868568.
  • R. C. Kloosterziel and G. F. Carnevale, “Closed-form linear stability conditions for rotating Rayleigh-Bénard convection with rigid, stress-free upper and lower boundaries,” J. Fluid Mech., vol. 480, pp. 25–42, 2003. DOI: 10.1017/S0022112002003294.
  • P. G. Siddheshwar and P. S. Titus, “Nonlinear Rayleigh-Bénard convection with variable heat source,” ASME J. Heat Transf., vol. 135, no. 122502, pp. 1–12, 2012.
  • S. Motsa and I. Animasaun, “Unsteady boundary Bayer flow over a vertical surface due to impulsive and Buoyancy in the presence of thermal-diffusion and diffusion-thermo using bivariate Spectral Relaxation Method,” JAFM, vol. 9, no. 7, pp. 2605–2619, 2016. DOI: 10.18869/acadpub.jafm.68.236.25597.
  • O. D. Makinde and I. L. Animasaun, “Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution,” J. Mol. Liquid., vol. 221, pp. 733–743, 2016. DOI: 10.1016/j.molliq.2016.06.047.
  • I. L. Animasaun and I. Pop, “Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream,” Alexand. Eng. J., vol. 56, no. 4, pp. 647–658, 2017. DOI: 10.1016/j.aej.2017.07.005.
  • B. C. Krishna, M. G. Priya and M. N. Mahantesh, “Influence of boundary roughness on the saturation of electrohydrodynamic Rayleigh-Taylor instability in two superposed fluids in the presence of nanostructured porous layer,” Wave Random Complex Media, pp. 1–15, 2021. DOI: 10.1080/17455030.2021.1912436.
  • G. Venezian, “Effect of modulation on the onset of thermal convection,” J. Fluid Mech, vol. 35, no. 2, pp. 243–254, 1969. DOI: 10.1017/S0022112069001091.
  • P. M. Gresho and R. L. Sani, “The effects of gravity modulation on the stability of a heated fluid layer,” J. Fluid Mech, vol. 40, no. 04, pp. 783–806, 1970. DOI: 10.1017/S0022112070000447.
  • S. H. Davis, “The stability of time periodic flows,” Annu. Rev. Fluid Mech., vol. 8, no. 1, pp. 57–74, 1976. DOI: 10.1146/annurev.fl.08.010176.000421.
  • S. Biringen and L. J. Peltier, “Numerical simulation of 3D Bénard convection with gravitational modulation,” Phys. Fluid., vol. 2, no. 5, pp. 754–764, 1990. DOI: 10.1063/1.857729.
  • R. Clever, G. Schubert and F. H. Busse, “Two-dimensional oscillatory convection in a gravitational modulated fluid layer,” J. Fluid Mech, vol. 253, no. 1, pp. 663–680, 1993. DOI: 10.1017/S0022112093001946.
  • R. Clever, G. Schubert and F. H. Busse, “Three-dimensional oscillatory convection in a gravitational modulated fluid layer,” Phys. Fluid., vol. 5, no. 10, pp. 2430–2437, 1993. DOI: 10.1063/1.858755.
  • B. S. Bhadauria and P. K. Bhatia, “Time-periodic heating of Rayleigh-Béenard convection,” Phys. Scr, vol. 66, no. 1, pp. 59–65, 2002. DOI: 10.1238/Physica.Regular.066a00059.
  • B. S. Bhadauria, P. K. Bhatia and L. Debnath, “Weakly non-linear analysis of Rayleigh-Bénard convection with time periodic heating,” Int. J. Non-Linear Mech., vol. 44, no. 1, pp. 58–65, 2009. DOI: 10.1016/j.ijnonlinmec.2008.08.009.
  • B. S. Bhadauria, “Study of heat transport in a temperature-dependent viscous liquid under temperature modulation,” MATEC web of conferences, vol. 16, pp. 1–7, 2014.
  • Y. Shu, B. Q. Li and B. R. Ramaprian, “Convection in modulated thermal gradients and gravity: Experimental measurements and numerical simulations,” Int. J. Heat Mass Transf., vol. 48, no. 1, pp. 145–160, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.08.010.
  • J. L. Rogers, W. Pesch, O. Brausch and M. F. Schatz, “Complex-ordered patterns in shaken convection,” Phys. Rev., vol. 71, pp. 1–18, 2005.
  • T. Boulal, S. Aniss and M. Belhaq, “Effect of quasi periodic gravitational modulation on the stability of a heated fluid layer,” Phys. Rev., vol. 76, pp. 1–5, 2007.
  • K. E. Torrance and D. L. Turcotte, “Thermal convection with large viscosity variations,” J. Fluid Mech, vol. 47, no. 1, pp. 113–125, 1971. DOI: 10.1017/S002211207100096X.
  • B. Straughan, “Sharp global nonlinear stability for temperature-dependent viscosity convection,” Proc. R. Soc. Lond. A, vol. 458, no. 2023, pp. 1773–1782, 2002. DOI: 10.1098/rspa.2001.0945.
  • B. Straughan, “Convection with temperature-dependent fluid properties,” Appl. Math. Sci, vol. 91, pp. 291–312, 2004.
  • P. G. Siddheshwar and A. T. Chan, “Thermorheological effect on Bénard and Marangoni convections in anisotropic porous media,” Proc. Six. Inter. Conf., Hydrodynamics-VI: Theory and Appl., pp. 471–476, 2005.
  • V. Ramachandramurthy and A. S. Aruna, “Rayleigh–Bénard-Taylor convection in temperature-sensitive Newtonian liquids with heat source/sink,” Int. J. Engg. Res. and Tech., vol. 7, no. 7, pp. 166–170, 2017.
  • S. Maruthamanikandan, M. T. Nisha and M. Soya, “Thermorheological and magneto-rheological effects on Marangoni-Ferroconvection with internal heat generation,” J. Phys.: Conf. Ser., vol. 1139, pp. 012024, 2018. DOI: 10.1088/1742-6596/1139/1/012024.
  • V. Ramachandramurthy, A. S. Aruna and N. Kavitha, “Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with heat source,” Int. J. Appl. Comp. Math., vol. 6, no. 27, pp. 1–14, 2020.
  • A. S. Aruna, “Non-linear Rayleigh–Bénard magnetoconvection in temperature-sensitive Newtonian liquids with heat source,” Pramana – J Phys., vol. 94, no. 114, pp. 1–10, 2020. DOI: 10.1007/s12043-020-02007-7.
  • M. C. Kemparaju, B. Lavanya, M. M. Nandeppanavar and N. Raveendra, “Heat transfer exploration of MHD flow stream with changing viscosity and thermal conductivity due to expandable surface,” MMEP, vol. 8, no. 6, pp. 955–960, 2021. DOI: 10.18280/mmep.080615.
  • V. Ramachandramurthy, N. Kavitha and A. S. Aruna, “The effect of a magnetic field on the onset of Bénard convection in variable viscosity couple-stress fluids using classical Lorenz model,” Appl.Math., vol. 67, no. 4, pp. 509–523, 2022. DOI: 10.21136/AM.2021.0010-21.
  • A. S. Aruna, V. Kumar and M. S. Basavaraj, “The effect of temperature/gravity modulation on finite amplitude cellular convection with variable viscosity effect,” Indian J. Phys., vol. 96, no. 8, pp. 2427–2436, 2022. DOI: 10.1007/s12648-021-02172-4.
  • P. G. Siddheshwar and S. Pranesh, “Effect of temperature/gravity modulation on the onset of magneto-convection in electrically conducting fluids with internal angular momentum,” J. Magnet. Magnetic Mater., vol. 219, no. 2, pp. 153–162, 2000. DOI: 10.1016/S0304-8853(00)00438-8.
  • P. G. Siddheshwar, B. S. Bhadauria, P. Mishra and A. K. Srivastava, “Study of heat transport by stationary magneto-convection in a Newtonian liquid under temperature or gravity modulation using Ginzburg-Landau model,” Int. J. Non-Linear Mech., vol. 47, no. 5, pp. 418–425, 2012. DOI: 10.1016/j.ijnonlinmec.2011.06.006.
  • P. G. Siddheshwar, R. K. Vanishree and C. Kanchana, “Study of Rayleigh-Bénard–Brinkman convection using LTNE model and coupled, real Ginzburg–Landau equations,” Int. J. Mech. Mechatron Eng, vol. 11, no. 6, pp. 1–8, 2017.
  • P. G. Siddheshwar and V. B. N, “Study of Brinkman-Bénard nanofluid convection with idealistic and realistic boundary conditions and by considering the effects of shape of nanoparticles,” Heat Transf., vol. 50, no. 4, pp. 3948–3976, 2021. DOI: 10.1002/htj.22059.
  • C. Kanchana, D. Laroze and P. G. Siddheshwar, “Study of Rayleigh-Bénard convection in a chemically reactive fluid using a generalized Lorenz model and the cubic–quintic Ginzburg–Landau equation,” Phys. Fluid., vol. 34, no. 2, pp. 023607, 2022. DOI: 10.1063/5.0081060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.