Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 6
176
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A multiscale scaled boundary finite element method solving steady-state heat conduction problem with heterogeneous materials

, &
Pages 345-366 | Received 19 Aug 2022, Accepted 13 Dec 2022, Published online: 02 Feb 2023

References

  • K. K. Tamma and R. Namburu, “Computational approaches with applications to non-classical and classical thermomechanical problems,” Appl. Mech. Rev., vol. 50, no. 9, pp. 514–551, Sept. 1997. DOI: 10.1115/1.3101742.
  • H. Zhang, M. Lu, Y. Zheng and S. Zhang, “General coupling extended multiscale FEM for elasto-plastic consolidation analysis of heterogeneous saturated porous media,” Int. J. Numer. Anal. Meth. Geomech., vol. 39, no. 1, pp. 63–95, Jan. 2015. DOI: 10.1002/nag.2296.
  • I. Özdemir, W. A. M. Brekelmans and M. G. D. Geers, “FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids,” Comput. Method Appl. Mech. Eng., vol. 198, nos. 3–4, pp. 602–613, Dec. 2008. DOI: 10.1016/j.cma.2008.09.008.
  • M. Geers, V. G. Kouznetsova and W. Brekelmans, “Multi-scale computational homogenization: Trends and challenges,” J. Comput. Appl. Math., vol. 234, no. 7, pp. 2175–2182, 2010. DOI: 10.1016/j.cam.2009.08.077.
  • S. Lin, J. Smith, W. K. Liu and G. J. Wagner, “An energetically consistent concurrent multiscale method for heterogeneous heat transfer and phase transition applications,” Comput. Method Appl. Mech. Eng., vol. 315, pp. 100–120, Mar. 2017. DOI: 10.1016/j.cma.2016.10.037.
  • H. Zheng, Y. Hou and Y. Zhang, “A finite element variational multiscale method for steady-state natural convection problem based on two local gauss integrations,” Numer. Methods Partial Differ. Eq., vol. 30, no. 2, pp. 361–375, Mar. 2014. DOI: 10.1002/num.21811.
  • T.-Y. Hou and X.-H. Wu, “A multiscale finite element method for elliptic problems in composite materials and porous media,” J. Comput. Phys., vol. 134, no. 1, pp. 169–189, Jun. 1997. DOI: 10.1006/jcph.1997.5682.
  • M. Vasilyeva, S. Stepanov, D. Spiridonov and V. Vasil’ev, “Multiscale finite element method for heat transfer problem during artificial ground freezing,” J. Comput. Appl. Math., vol. 371, pp. 112605, Jun. 2020. DOI: 10.1016/j.cam.2019.
  • J-J Zhai, S. Cheng, T. Zeng, Z-h Wang and D-n Fang, “Extended multiscale FE approach for steady-state heat conduction analysis of 3D braided composites,” Compos. Sci. Technol., vol. 151, pp. 317–324, Oct. 2017. DOI: 10.1016/j.compscitech.2017.08.030.
  • J. Wu, P. Huang and X. Feng, “A new variational multiscale FEM for the steady-state natural convection problem with bubble stabilization,” Numer. Heat Transfer A-Appl., vol. 68, no. 7, pp. 777–796, Oct. 2015. DOI: 10.1080/10407782.2015.1012851.
  • H.-W. Zhang, J.-K. Wu and Z.-D. Fu, “Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials,” Comput. Mech., vol. 45, no. 6, pp. 623–635, Feb. 2010. DOI: 10.1007/s00466-010-0475-3.
  • H.-W. Zhang, J.-K. Wu, J. Lü and Z.-D. Fu, “Extended multiscale finite element method for mechanical analysis of heterogeneous materials,” Acta Mech. Sin., vol. 26, no. 6, pp. 899–920, Dec. 2010. DOI: 10.1007/s10409-010-0393-9.
  • H.-W. Zhang, Z.-D. Fu and J.-K. Wu, “Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media,” Adv. Water Resour., vol. 32, no. 2, pp. 268–279, Feb. 2009. DOI: 10.1007/s00466-010-0475-3.
  • S. Zhang, D. S. Yang, H. W. Zhang and Y. G. Zheng, “Coupling extended multiscale finite element method for thermoelastic analysis of heterogeneous multiphase materials,” Comput. Struct., vol. 121, pp. 32–49, May 2013. DOI: 10.1016/j.compstruc.2013.03.001.
  • D. S. Yang, H. W. Zhang, S. Zhang and M. K. Lu, “A multiscale strategy for thermo-elastic plastic stress analysis of heterogeneous multiphase materials,” Acta Mech., vol. 226, no. 5, pp. 1549–1569, May 2015. DOI: 10.1007/s00707-014-1269-z.
  • H.-W. Zhang, M.-K. Lu and Y.-G. Zheng, “A coupling extended multiscale finite element method for dynamic analysis of heterogeneous saturated porous media,” Int. J. Numer. Meth. Eng., vol. 104, no. 1, pp. 18–47, Mar. 2015. DOI: 10.1002/nme.4929.
  • Y. Efendiev, T. Hou and V. Ginting, “Multiscale finite element methods for nonlinear problems and their applications,” Commun. Math. Sci., vol. 2, no. 4, pp. 553–589, Dec. 2004. 2004. v2. n4. a2. DOI: 10.4310/CMS.
  • H. W. Zhang, D. S. Yang, S. Zhang and Y. G. Zheng, “Multiscale nonlinear thermoelastic analysis of heterogeneous multiphase materials with temperature-dependent properties,” Finite Elem. Anal. Des., vol. 88, pp. 97–117, Oct. 2014. DOI: 10.1016/j.finel.2014.05.002.
  • J.-P. Wolf and C.-M. Song, Finite-Element Modelling of Unbounded Media. Chichester, UK: Wiley, 1996.
  • C.-M. Song and J.-P. Wolf, “The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method-for elastodynamics,” Comput. Method Appl. Mech. Eng., vol. 147, no. 3–4, pp. 329–355, Aug. 1997. DOI: 10.1016/S0045-7825(97)00021-2.
  • Y.-Q. He, H.-T. Yang and A.-J. Deeks, “An element-Free Galerkin scaled boundary method for steady-state heat transfer problems,” Numer. Heat Transfer B-Fundam., vol. 64, no. 3, pp. 199–217, Jun. 2013. DOI: 10.1080/10407790.2013.791777.
  • P. Li, J. Liu, G. Lin, P. Zhang and B. Xu, “A combination of isogeometric technique and scaled boundary method for the solution of the steady-state heat transfer problems in arbitrary plane domain with Robin boundary,” Eng. Anal. Bound. Elem., vol. 82, pp. 43–56, Sept. 2017. DOI: 10.1016/j.enganabound.2017.05.006.
  • E.-T. Ooi, S. Natarajan and C.-M. Song, “Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon-quadtree meshes,” In J. Fract., vol. 203, no. 1, pp. 1–23, Aug. 2016. DOI: 10.1007/s10704-016-0136-4.
  • E. T. Ooi, C. Song, F. Tin-Loi and Z. Yang, “Polygon scaled boundary finite elements for crack propagation modelling,” Int. J. Numer. Meth. Eng., vol. 91, no. 3, pp. 319–342, Mar. 2012. DOI: 10.1002/nme.4284.
  • A. Saputra, H. Talebi, D. Tran, C. Birk and C.-M. Song, “Automatic image-based stress analysis by the scaled boundary finite element method,” Int. J. Numer. Meth. Eng., vol. 109, no. 5, pp. 697–738, May 2017. DOI: 10.1002/nme.5304.
  • X. Chen, T. Luo, E. T. Ooi, E. H. Ooi and C. Song, “A Quadtree-Polygon-Based Scaled Boundary Finite Element Method for Crack Propagation Modeling in Functionally Graded Materials,” Theor. Appl. Fract. Mech., vol. 94, pp. 120–133, Apr. 2018. DOI: 10.1002/nme.5304.
  • Y.-Q. He, X.-C. Dong and H.-T. Yang, “A new adaptive algorithm for phase change heat transfer problems based on quadtree SBFEM and smoothed effective heat capacity method,” Numer. Heat Transfer B-Fundam., vol. 75, no. 2, pp. 111–126, May 2019. DOI: 10.1080/10407790.2019.1607116.
  • M. Praster, R. Reichel and S. Klinkel, “Multiscale analysis of heterogeneous materials in boundary representation,” Proc. Appl. Math. Mech., vol. 19, no. 1, pp. 1–2, Jun. 2019. DOI: 10.1002/pamm.201900452.
  • H. Liu and H.-W. Zhang, “A p-adaptive multi-node extended multiscale finite element method for 2D elastostatic analysis of heterogeneous materials,” Comp. Mater. Sci., vol. 73, pp. 79–92, Jun. 2013. DOI: 10.1016/j.commatsci.2013.02.025.
  • E.-T. Ooi, H. Man, S. Natarajan and C.-M. Song, “Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling,” Eng. Fract. Mech., vol. 144, pp. 101–117, Aug. 2015. DOI: 10.1016/j.engfracmech.2015.06.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.