Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 6
214
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nanoscale investigation of surface wettability distribution on bubble nucleation with variable temperature boundary condition

, , , &
Pages 433-444 | Received 12 Oct 2022, Accepted 17 Jan 2023, Published online: 02 Feb 2023

References

  • D. J. Wesley, R. M. Smith, W. B. Zimmerman and J. R. Howse, “Influence of surface wettability on microbubble formation,” Langmuir, vol. 32, no. 5, pp. 1269–1278, 2016. DOI: 10.1021/acs.langmuir.5b03743.
  • J. M. Kim, D. I. Yu, H. S. Park, K. Moriyama and M. H. Kim, “Smart surface in pool boiling: thermally-induced wetting transition,” Int. J. Heat Mass Transfer, vol. 109, pp. 231–241, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.02.009.
  • V. P. Carey, “Thermodynamic analysis of the intrinsic stability of superheated liquid in a micromechanical actuator with elastic walls,” Microscale Thermophys. Eng., vol. 4, no. 2, pp. 109–123, 2000. DOI: 10.1080/108939500404025.
  • M. M. Petrovic and V. D. Stevanovic, “Coupled two-fluid flow and wall heat conduction modeling of nucleate pool boiling,” Numer. Heat Transfer, Part A, vol. 80, no. 3, pp. 63–91, 2021. DOI: 10.1080/10407782.2021.1935047.
  • L. Zhang, et al., “Numerical simulation on critical heat flux of downward-facing surface with modified wall boiling model,” Numer. Heat Transfer, Part A, pp. 1–24, 2022. DOI: 10.1080/10407782.2022.2136318.
  • Y. Lin, et al., “A numerical study of slug bubble growth during flow boiling in a diverging microchannel,” Numer. Heat Transfer, Part A, vol. 80, no. 7, pp. 356–367, 2021. DOI: 10.1080/10407782.2021.1947093.
  • S. Das, B. Saha and S. Bhaumik, “Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure,” Exp. Therm. Fluid Sci., vol. 81, pp. 454–465, 2017. DOI: 10.1016/j.expthermflusci.2016.09.009.
  • B. Bourdon, R. Rioboo, M. Marengo, E. Gosselin and J. De Coninck, “Influence of the wettability on the boiling onset,” Langmuir, vol. 28, no. 2, pp. 1618–1624, 2012. DOI: 10.1021/la203636a.
  • H. Jo, H. S. Ahn, S. Kang and M. H. Kim, “A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces,” Int. J. Heat Mass Transfer, vol. 54, no. 25–26, pp. 5643–5652, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.001.
  • M. Smit, J. van der Tol and M. Hill, “Moore’s law in photonics,” Laser & Photon. Rev, vol. 6, no. 1, pp. 1–13, 2012. DOI: 10.1002/lpor.201100001.
  • L. Lin, “Microscale thermal bubble formation: thermophysical phenomena and applications,” Microscale Thermophys. Eng., vol. 2, no. 2, pp. 71–85, 1998. DOI: 10.1080/108939598199991.
  • S. P. C. Jian-Gang Weng, “Interfacial ambiguities in microdroplets and microbubbles,” Microscale Thermophys. Eng., vol. 4, no. 2, pp. 83–87, 2010. DOI: 10.1080/108939500403990.
  • B. Bourdon, P. Di Marco, R. Rioboo, M. Marengo and J. De Coninck, “Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces,” Int. Commun. Heat Mass Transfer, vol. 45, pp. 11–15, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.04.009.
  • A. Hens, R. Agarwal and G. Biswas, “Nanoscale study of boiling and evaporation in a liquid Ar film on a Pt heater using molecular dynamics simulation,” Int. J. Heat Mass Transfer, vol. 71, pp. 303–312, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.032.
  • Z. Gao, W. Wu and B. Wang, “The effects of nanoscale nuclei on cavitation,” J. Fluid Mech., vol. 911, p. A20, 2021. DOI: 10.1017/jfm.2020.1049.
  • H. R. Seyf and Y. Zhang, “Molecular dynamics simulation of normal and explosive boiling on nanostructured surface,” J. Heat Transfer, vol. 135, no. 12, p. 121503, 2013. DOI: 10.1115/1.4024668.
  • Q. Cao, et al., “Molecular dynamics simulations of the liquid film evaporation heat transfer on different wettability hybrid surfaces at the nanoscale,” J. Mol. Liq., vol. 314, p. 113610, 2020. DOI: 10.1016/j.molliq.2020.113610.
  • Y. Chen, Y. Zou, B. Yu, D. Sun and X. Chen, “Effects of surface wettability on rapid boiling and bubble nucleation: a molecular dynamics study,” Nanoscale Microscale Thermophys. Eng., vol. 22, no. 3, pp. 198–212, 2018. DOI: 10.1080/15567265.2018.1475526.
  • Y. Chen, Y. Zou, Y. Wang, D. Han and B. Yu, “Bubble nucleation on various surfaces with inhomogeneous interface wettability based on molecular dynamics simulation,” Int. Commun. Heat Mass Transfer, vol. 98, pp. 135–142, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.08.017.
  • T. Yamamoto and M. Matsumoto, “Initial stage of nucleate boiling: molecular dynamics investigation,” JTST, vol. 7, no. 1, pp. 334–349, 2012. DOI: 10.1299/jtst.7.334.
  • P. Bai, L. Zhou, X. Huang and X. Du, “Molecular insight into bubble nucleation on the surface with wettability transition at controlled temperatures,” Langmuir, vol. 37, no. 29, pp. 8765–8775, 2021. DOI: 10.1021/acs.langmuir.1c01121.
  • H. Zhao, L. Zhou and X. Du, “Bubble nucleation on grooved surfaces with hybrid wettability: molecular dynamics study under a transient temperature boundary condition,” Int. J. Heat Mass Transfer, vol. 166, p. 120752, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120752.
  • Y. Li, W. Zhou, Y. Zhang, B. Qi and J. Wei, “A molecular dynamics study of surface wettability effects on heterogeneous bubble nucleation,” Int. Commun. Heat Mass Transfer, vol. 119, p. 104991, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104991.
  • A. Shahmardi, O. Tammisola, M. Chinappi and L. Brandt, “Effects of surface nanostructure and wettability on pool boiling: a molecular dynamics study,” Int. J. Therm. Sci., vol. 167, p. 106980, 2021. DOI: 10.1016/j.ijthermalsci.2021.106980.
  • W. Zhou, Y. Li, M. Li, J. Wei and W. Tao, “Bubble nucleation over patterned surfaces with different wettabilities: molecular dynamics investigation,” Int. J. Heat Mass Transfer, vol. 136, pp. 1–9, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.093.
  • H. R. Seyf and Y. Zhang, “Effect of nanotextured array of conical features on explosive boiling over a flat substrate: a nonequilibrium molecular dynamics study,” Int. J. Heat Mass Transfer, vol. 66, pp. 613–624, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.025.
  • S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995. DOI: 10.1006/jcph.1995.1039.
  • M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. New York: Oxford University, 1989,
  • S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., vol. 81, no. 1, pp. 511–519, 1984. DOI: 10.1063/1.447334.
  • T. Schneider and E. Stoll, “Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions,” Phys. Rev. B, vol. 17, no. 3, pp. 1302–1322, 1978. DOI: 10.1103/PhysRevB.17.1302.
  • A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool,” Modell. Simul. Mater. Sci. Eng., vol. 18, no. 1, p. 015012, 2010. DOI: 10.1088/0965-0393/18/1/015012.
  • H. Watanabe, N. Ito and C. K. Hu, “Phase diagram and universality of the Lennard-Jones gas-liquid system,” J. Chem. Phys., vol. 136, no. 20, p. 204102, 2012. DOI: 10.1063/1.4720089.
  • R. Diaz and Z. Guo, “Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer,” Numer. Heat Transfer, Part A, vol. 72, no. 12, pp. 891–903, 2017. DOI: 10.1080/10407782.2017.1412710.
  • K. Nakanishi and K. Toukubo, “Molecular dynamics studies of Lennard‐Jones liquid mixtures. V. Local composition in several kinds of equimolar mixtures with different combining rule,” Chem. Phys., vol. 70, no. 12, pp. 5848–5850, 1979. DOI: 10.1063/1.437414.
  • X. She, T. A. Shedd, B. Lindeman, Y. Yin and X. Zhang, “Bubble formation on solid surface with a cavity based on molecular dynamics simulation,” Int. J. Heat Mass Transfer, vol. 95, pp. 278–287, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.082.
  • G. Nagayama and P. Cheng, “Effects of interface wettability on microscale flow by molecular dynamics simulation,” Int. J. Heat Mass Transfer, vol. 47, no. 3, pp. 501–513, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.07.013.
  • J. J. Nicolas, K. E. Gubbins, W. B. Streett and D. J. Tildesley, “Equation of state for the Lennard-Jones fluid,” Mol. Phys, vol. 37, no. 5, pp. 1429–1454, 1979. DOI: 10.1080/00268977900101051.
  • W. Zhou, D. Han and G. Xia, “Maximal enhancement of nanoscale boiling heat transfer on superhydrophilic surfaces by improving solid-liquid interactions: insights from molecular dynamics,” Appl. Surf. Sci., vol. 591, p. 153155, 2022. DOI: 10.1016/j.apsusc.2022.153155.
  • Y.-J. Chen, B. Yu, Y. Zou, B.-N. Chen and W.-Q. Tao, “Molecular dynamics studies of bubble nucleation on a grooved substrate,” Int. J. Heat Mass Transfer, vol. 158, p. 119850, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119850.
  • M. H. Taheri, M. Mohammadpourfard, A. K. Sadaghiani and A. Kosar, “Wettability alterations and magnetic field effects on the nucleation of magnetic nanofluids: a molecular dynamics simulation,” J. Mol. Liq., vol. 260, pp. 209–220, 2018. DOI: 10.1016/j.molliq.2018.03.075.
  • Y.-J. Chen, B. Yu, Y. Zou, B.-N. Chen and W.-Q. Tao, “Study on the effect of foreign particle on bubble nucleation by using molecular dynamics simulation,” J. Mol. Liq., vol. 305, p. 112876, 2020. DOI: 10.1016/j.molliq.2020.112876.
  • B. R. Novak, E. J. Maginn and M. J. McCready, “Comparison of heterogeneous and homogeneous bubble nucleation using molecular simulations,” Phys. Rev. B, vol. 75, no. 8, p. 085413, 2007. DOI: 10.1103/PhysRevB.75.085413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.