Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 3
187
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Scaling group analysis of a Magnetohydrodynamic Nanofluid flow with Double dispersion and Dufour effects on a vertical wedge

ORCID Icon & ORCID Icon
Pages 271-293 | Received 25 Oct 2022, Accepted 30 Mar 2023, Published online: 24 Apr 2023

References

  • R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, no. 9–10, pp. 2002–2018, May 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf., vol. 128, no. 3, pp. 240–250, Mar. 2006. DOI: 10.1115/1.2150834.
  • M. Hatami and H. Safari, “Effect of inside heated cylinder on the natural convection heat transfer of nanofluids in a wavy-wall enclosure,” Int. J. Heat Mass Transf., vol. 103, pp. 1053–1057, Dec. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.08.029.
  • R. M. Kasmani, S. Sivasankaran, M. Bhuvaneswari and Z. Siri, “Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction,” JAFM, vol. 9, no. 1, pp. 379–388, 2016. DOI: 10.18869/acadpub.jafm.68.224.24151.
  • O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1326–1332, July 2011. DOI: 10.1016/j.ijthermalsci.2011.02.019.
  • C.-Y. Cheng, “Natural convection boundary layer flow over a truncated cone in a porous medium saturated by a nanofluid,” Int. Commun. Heat Mass Transf., vol. 39, no. 2, pp. 231–235, Feb. 2012. DOI: 10.1016/j.icheatmasstransfer.2011.11.002.
  • E. H. Aly and I. Pop, “MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition,” HFF., vol. 29, no. 9, pp. 3012–3038, Aug. 2019. DOI: 10.1108/HFF-12-2018-0794.
  • Z. Shah, M. Rooman and M. Shutaywi, “Computational analysis of radiative engine oil-based Prandtl–Eyring hybrid nanofluid flow with variable heat transfer using the Cattaneo–Christov heat flux model,” RSC Adv., vol. 13, no. 6, pp. 3552–3560, 2023. DOI: 10.1039/D2RA08197K.
  • S. Mondal, et al., “A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM,” J. Braz. Soc. Mech. Sci. Eng., vol. 42, no. 1, pp. 12, Dec. 2020. DOI: 10.1007/s40430-019-2103-2.
  • M. Veera Krishna, N. Ameer Ahamad and A. J. Chamkha, “Hall effects on unsteady magnetohydrodynamic flow of a Nanofluid past an Oscillatory vertical rotating flat plate embedded in porous media,” J. Nanofluid., vol. 10, no. 2, pp. 259–269, June 2021. DOI: 10.1166/jon.2021.1776.
  • F. S. Ibrahim, M. A. Mansour and M. A. A. Hamad, “Lie-group analysis of radiative and magnetic field effects on free convection and mass transfer flow past a semi-infinite vertical flat plate,” Elect. J. Diff. Eq., vol. 2005, no. 39, pp. 1–17, 2005.
  • M. Jalil, S. Asghar and M. Mushtaq, “Lie group analysis of mixed convection flow with mass transfer over a stretching surface with suction or injection,” Math. Probl. Eng., vol. 2010, pp. 1–14, 2010. DOI: 10.1155/2010/264901.
  • J. Pranitha, G. Venkata Suman and D. Srinivasacharya, “Scaling group transformation for mixed convection in a power-law fluid saturated porous medium with effects of Soret, radiation and variable properties,” Front. Heat Mass Transf. FHMT., vol. 9, pp. 39, 2017. DOI: 10.5098/hmt.9.39.
  • S. Eshaghi, F. Izadpanah, A. S. Dogonchi, A. J. Chamkha, M. B. B. Hamida and H. Alhumade, “The optimum double diffusive natural convection heat transfer in H-Shaped cavity with a baffle inside and a corrugated wall,” Case Stud. Therm. Eng., vol. 28, pp. 101541, Dec. 2021. DOI: 10.1016/j.csite.2021.101541.
  • S. R. Afshar, S. R. Mishra, A. S. Dogonchi, N. Karimi, A. J. Chamkha and H. Abulkhair, “Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink,” J. Taiwan Inst. Chem. Eng., vol. 128, pp. 98–113, Nov. 2021. DOI: 10.1016/j.jtice.2021.09.006.
  • A. A. Pasha, et al., “Efficacy of exothermic reaction on the thermal-free convection in a nano-encapsulated phase change materials-loaded enclosure with circular cylinders inside,” J. Energy Storage, vol. 59, pp. 106522, Mar. 2023. DOI: 10.1016/j.est.2022.106522.
  • A. M. Rashad, A. J. Chamkha and M. M. M. Abdou, “Mixed convection flow of non-Newtonian fluid from vertical surface saturated in a porous medium filled with a nanofluid,” J. Appl. Fluid Mech., vol. 6, no. 2, pp. 301–309, 2013. DOI: 10.36884/JAFM.6.02.19530.
  • A. Asghar, et al., “Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition,” Heliyon, vol. 9, no. 2, pp. e13189, 2023. DOI: 10.1016/j.heliyon.2023.e13189.
  • O. P. Meena, P. Janapatla and D. Srinivasacharya, “Mixed convection flow across a vertical cone with heat source/sink and chemical reaction effects,” Math Model. Comput. Simul., vol. 14, no. 3, pp. 532–546, May 2022. DOI: 10.1134/S2070048222030127.
  • O. Prakash Meena and J. Pranitha, “Power-law nanofluid on mixed convection with influence of double dispersion saturated non-Darcy porous media,” AIP Conf. Proceed., vol. 2246, no. 1, pp. 020019, July 2020. DOI: 10.1063/5.0014503.
  • T. Tayebi and A. J. Chamkha, “Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids,” Numer. Heat Transf. A Appl., vol. 70, no. 10, pp. 1141–1156, 2016. Oct. 2016. DOI: 10.1080/10407782.2016.1230423.
  • S. Z. Heris, M. N. Esfahany and G. Etemad, “Numerical investigation of nanofluid laminar convective heat transfer through a circular tube,” Numer. Heat Transf. A Appl., vol. 52, no. 11, pp. 1043–1058, Sept. 2007. DOI: 10.1080/10407780701364411.
  • F. G. Awad, P. Sibanda and P. V. S. N. Murthy, “A note on double dispersion effects in a nanofluid flow in a non-Darcy porous medium,” J. Heat Transf., vol. 137, no. 10, pp. 104501–104506, Oct. 2015. DOI: 10.1115/1.4024895.
  • D. Chatterjee, “MHD mixed convection in a lid-driven cavity including a heated source,” Numer. Heat Transf. A Appl., vol. 64, no. 3, pp. 235–254, May 2013. DOI: 10.1080/10407782.2013.779191.
  • S. Sivasankaran, M. A. Mansour, A. M. Rashad and M. Bhuvaneswari, “MHD mixed convection of Cu–water nanofluid in a two-sided lid-driven porous cavity with a partial slip,” Numer. Heat Transf. A Appl., vol. 70, no. 12, pp. 1356–1370, Nov. 2016. DOI: 10.1080/10407782.2016.1243957.
  • T. K. Aldoss, Y. D. Ali and M. A. Al-Nimr, “MHD mixed convection from a horizontal circular cylinder,” Numer. Heat Transf. A Appl., vol. 30, no. 4, pp. 379–396, Apr. 1996. DOI: 10.1080/10407789608913846.
  • A. J. Chamkha and F. Selimefendigil, “MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material,” HFF, vol. 29, no. 10, pp. 3559–3583, Dec. 2019. DOI: 10.1108/HFF-07-2018-0364.
  • M. M. Rahman, H. F. Öztop, N. A. Rahim, R. Saidur and K. Al-Salem, “MHD mixed convection with joule heating effect in a lid-driven cavity with a heated semi-circular source using the finite element technique,” Numer. Heat Transf. A Appl., vol. 60, no. 6, pp. 543–560, Sept. 2011. DOI: 10.1080/10407782.2011.609087.
  • M. A. A. Hamad and M. Ferdows, “Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet,” Appl. Math. Mech.-Engl. Ed., vol. 33, no. 7, pp. 923–930, July 2012. DOI: 10.1007/s10483-012-1595-7.
  • M. S. Shadloo and A. Hadjadj, “Laminar-turbulent transition in supersonic boundary layers with surface heat transfer: a numerical study,” Numer. Heat Transf. A Appl., vol. 72, no. 1, pp. 40–53, August 2017. DOI: 10.1080/10407782.2017.1353380.
  • A. Mahdy, “Gyrotactic microorganisms mixed convection nanofluid flow along an isothermal vertical wedge in porous media,” Int. J. Aerosp. Mech. Eng., vol. 11, no. 4, pp. 840–850, 2017. DOI: publications.waset.org/10007292/pdf.
  • S. M. Atif, S. Hussain and M. Sagheer, “Heat and mass transfer analysis of time-dependent tangent hyperbolic nanofluid flow past a wedge,” Phys. Lett. A., vol. 383, no. 11, pp. 1187–1198, Mar. 2019. DOI: 10.1016/j.physleta.2019.01.003.
  • I. Waini, A. Ishak and I. Pop, “MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge,” Appl. Math. Mech.-Engl. Ed., vol. 41, no. 3, pp. 507–520, Jan. 2020. DOI: 10.1007/s10483-020-2584-7.
  • R. Kandasamy, K. Periasamy and K. K. Sivagnana Prabhu, “Effects of chemical reaction, heat and mass transfer along a wedge with heat source and concentration in the presence of suction or injection,” Int. J. Heat Mass Transf., vol. 48, no. 7, pp. 1388–1394, Mar. 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.008.
  • N. Ameer Ahamad, M. Veera Krishna and A. J. Chamkha, “Radiation-absorption and Dufour effects on magnetohydrodynamic rotating flow of a nanofluid over a semi-infinite vertical moving plate with a constant heat source,” J. Nanofluid., vol. 9, no. 3, pp. 177–186, Sept. 2020. DOI: 10.1166/jon.2020.1743.
  • K. Sharada and B. Shankar, “MHD mixed convection flow of a Casson fluid over an exponentially stretching surface with the effects of Soret, Dufour, thermal radiation and chemical reaction,” WJM., vol. 5, no. 9, pp. 165–177, Sept. 2015. DOI: 10.4236/wjm.2015.59017.
  • J. Pranitha, O. P. Meena and V. M. Magagula, “Influence of radiation on mixed convection flow across a vertical cone with Soret effect,” Math. Models Comput. Simul., vol. 14, no. 5, pp. 847–862, Sept. 2022. DOI: 10.1134/S2070048222050106.
  • N. A. Ahammad and M. V. Krishna, “Numerical investigation of chemical reaction, Soret and Dufour impacts on MHD free convective gyrating flow through a vertical porous channel,” Case Stud. Therm. Eng., vol. 28, pp. 101571, Dec. 2021. DOI: 10.1016/j.csite.2021.101571.
  • N. A. Ahammad, M. Veera Krishna and A. J. Chamkha, “Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface,” Case Stud. Therm. Eng., vol. 27, pp. 101229, Oct. 2021. DOI: 10.1016/j.csite.2021.101229.
  • O. D. Makinde, “On MHD mixed convection with soret and dufour effects past a vertical plate embedded in a porous medium,” Latin Amer. Appl. Res., vol. 41, no. 1, pp. 63–68, 2011.
  • Y. Rghif, B. Zeghmati and F. Bahraoui, “Modelling of a salt gradient solar pond under Moroccan climate taking into account double-diffusive convection,” Mater. Today Proceed., vol. 30, pp. 883–888, Jan. 2020. DOI: 10.1016/j.matpr.2020.04.345.
  • Y. Rghif, B. Zeghmati and F. Bahraoui, “Soret and Dufour effects on thermosolutal convection developed in a salt gradient solar pond,” Int. J. Therm. Sci., vol. 161, pp. 106760, March 2021. DOI: 10.1016/j.ijthermalsci.2020.106760.
  • Y. Rghif, B. Zeghmati and F. Bahraoui, “Modelling the influences of a phase change material and the Dufour effect on thermal performance of a salt gradient solar pond,” Int. J. Therm. Sci., vol. 166, pp. 106979, Aug. 2021. DOI: 10.1016/j.ijthermalsci.2021.106979.
  • Y. Rghif, B. Zeghmati and F. Bahraoui, “Soret and Dufour effects on thermal storage and storage efficiency of a salt gradient solar pond,” In June 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), pp. 1–6. IEEE. DOI: 10.1109/REDEC49234.2020.9163880.
  • Y. Rghif, B. Zeghmati and F. Bahraoui, “Numerical study of Soret and Dufour coefficients on heat and mass transfer in a salt gradient solar pond,” AIP Conf. Proceed., vol. 2345, no. 1, p. 020003. April 2021. DOI: 10.1063/5.0049389.
  • M. Kumari, H. S. Takhar and G. Nath, “Mixed convection flow over a vertical wedge embedded in a highly porous medium,” Heat Mass Transf., vol. 37, no. 2–3, pp. 139–146, April 2001. DOI: 10.1007/s002310000154.
  • C. Y. Cheng, “Soret and Dufour effects on mixed convection heat and mass transfer from a vertical wedge in a porous medium with constant wall temperature and concentration,” Transp. Porous. Med., vol. 94, no. 1, pp. 123–132, Aug. 2012. DOI: 10.1007/s11242-012-9992-1.
  • R. S. R. Gorla, A. Chamkha and A. M. Rashad, ” “Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid,” In 3rd International Conference on Thermal Issues in Emerging Technologies Theory and Applications (IEEE), December 2010, pp. 445–451, 2010. DOI: 10.1109/THETA.2010.5766429.
  • P. Cheng, “Heat transfer in geothermal systems,” in Advances in Heat Transfer, vol. 14, T. F. Irvine and J. P. Hartnett, Eds. New York: Elsevier, 1979, pp. 1–105. DOI: 10.1016/S0065-2717(08)70085-6.
  • M. Sheikholeslami, S. Abelman and D. D. Ganji, “Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation,” Int. J. Heat Mass Transf., vol. 79, pp. 212–222, Dec. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.004.
  • K. L. Hsiao, “Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet,” Appl. Therm. Eng., vol. 98, pp. 850–861, April 2016. DOI: 10.1016/j.applthermaleng.2015.12.138.
  • J. C. Hsieh, T. S. Chen and B. F. Armaly, “Mixed convection along a non-isothermal vertical plate embedded in a porous medium: the entire regime,” Int. J. Heat Mass Transf., vol. 36, no. 7, pp. 1819–1825, May 1993. DOI: 10.1016/S0017-9310(05)80168-1.
  • K. A. Yih, “Radiation effect on mixed convection over an isothermal wedge in porous media: the entire regime,” Heat Transf. Eng., vol. 22, no. 3, pp. 26–32, June 2001. DOI: 10.1080/014576301300092540.
  • A. J. Chamkha, S. Abbasbandy, A. M. Rashad and K. Vajravelu, “Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid,” Transp Porous Med., vol. 91, no. 1, pp. 261–279, January 2012. DOI: 10.1007/s11242-011-9843-5.
  • B. Ganga, S. M. Yusuff Ansari, N. V. Ganesh and A. A. Hakeem, “Hydromagnetic flow and radiative heat transfer of nanofluid past a vertical plate,” J. Taibah Univ. Sci., vol. 11, no. 6, pp. 1200–1213, Nov. 2017. DOI: 10.1016/j.jtusci.2015.12.005.
  • O. P. Meena,“Mixed convection nano fluid flow over a vertical wedge saturated in porous medium with influence of double dispersion using lie group scaling,” Special Topic Rev Porous Media Int. J., vol. 11, no. 3, pp. 297–311, Jan. 2020. DOI: 10.1615/SpecialTopicsRevPorousMedia.2020031755.
  • K. M. Shirvan, M. Mamourian, S. Mirzakhanlari and M. Moghiman, “Investigation on effect of magnetic field on mixed convection heat transfer in a ventilated square cavity,” Procedia Eng., vol. 127, pp. 1181–1188, 2015. DOI: 10.1016/j.proeng.2015.11.458.
  • P. Janapatla and A. Chakraborty, “Mixed convection nanofluid flow using lie group scaling with the impact of MHD radiation thermophoresis and brownian motion,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 101, no. 2, pp. 85–98, Jan. 2023. DOI: 10.37934/arfmts.101.2.8598.
  • M. B. Ashraf, T. Hayat, A. Alsaedi and S. A. Shehzad, “Soret and Dufour effects on the mixed convection flow of an Oldroyd-B fluid with convective boundary conditions,” Results Phys., vol. 6, pp. 917–924, Jan. 2016. DOI: 10.1016/j.rinp.2016.11.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.