Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 4
101
Views
0
CrossRef citations to date
0
Altmetric
Articles

Phase change heat transfer analysis of anisotropic structures with moving heat source using the element-free Galerkin method

, , , , , & show all
Pages 392-414 | Received 03 Nov 2022, Accepted 10 Apr 2023, Published online: 09 May 2023

References

  • A. H. Eslampanah, M. E. Aalami-Aleagha, S. Feli, and M. R. Ghaderi, “3-D numerical evaluation of residual stress and deformation due welding process using simplified heat source models,” J. Mech. Sci. Technol., vol. 29, no. 1, pp. 341–348, Jan. 2015. DOI: 10.1007/s12206-014-1240-x.
  • S. K. Velaga and A. Ravisankar, “Finite element based parametric study on the characterization of weld process moving heat source parameters in austenitic stainless steel,” Int. J. Pres. Ves. Pip., vol. 157, pp. 63–73, Sept. 2017. DOI: 10.1016/j.ijpvp.2017.09.001.
  • Z. Y. Zhang et al., “Thermal model and temperature field in rail grinding process based on a moving heat source,” Appl. Therm. Eng., vol. 106, pp. 855–864, Jun. 2016. DOI: 10.1016/j.applthermaleng.2016.06.071.
  • C. H. Fu, Y. B. Guo, and M. P. Sealy, “A predictive model and validation of laser cutting of nitinol with a novel moving volumetric pulsed heat flux,” J. Mater. Process. Technol., vol. 214, no. 12, pp. 2926–2934, Jul. 2014. DOI: 10.1016/j.jmatprotec.2014.06.010.
  • N. G. Skrzypczak, N. G. Tanikella, and J. M. Pearce, “Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications,” HardwareX, vol. 8, pp. e00130, Jul. 2020. DOI: 10.1016/j.ohx.2020.e00130.
  • E. O. Reséndiz-Flores and F. R. Saucedo-Zendejo, “Two-dimensional numerical simulation of heat transfer with moving heat source in welding using the Finite Pointset Method,” Int. J. Heat. Mass. Transf., vol. 90, pp. 239–245, Jul. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.023.
  • V. I. Ryazhskikh, A. V. Nikolenko, and D. A. Konovalov, “On the structure of the orthotropic 3D permeability tensor of an anisotropic porous body in heat and mass transfer problems,” J. Phys.: Conf. Ser., vol. 1745, no. 1, pp. 1–3, Oct. 2021. DOI: 10.1088/1742-6596/1745/1/012082.
  • A. G. Zimmerman and J. Kowalski, “Mixed finite elements for convection-coupled phase-change in enthalpy form: Open software verified and applied to 2D benchmarks,” Comput. Math. Appl., vol. 84, pp. 77–96, Jan. 2021. DOI: 10.1016/j.camwa.2020.11.008.
  • W.-A. Yao, H.-X. Yao, C. Zuo, and X.-F. Hu, “Precise integration boundary element method for solving dual phase change problems based on the effective heat capacity model,” Eng. Anal. Bound. Elem., vol. 108, pp. 411–421, Aug. 2019. DOI: 10.1016/j.enganabound.2019.08.027.
  • Z. Li, M. Yang, and Y. Zhang, “Numerical simulation of melting problems using the lattice Boltzmann method with the interfacial tracking method,” Numer. Heat. Tr. A-Appl., vol. 68, no. 11, pp. 1175–1197, Jun. 2015. DOI: 10.1080/10407782.2015.1037126.
  • D. Couëdel et al., “2D-heat transfer modelling within limited regions using moving sources: Application to electron beam welding,” Int. J. Heat. Mass. Transf., vol. 46, no. 23, pp. 4553–4559, May. 2003. DOI: 10.1016/S0017-9310(03)00288-6.
  • A. Artinov, M. Bachmann, and M. Rethmeier, “Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates,” Int. J. Heat. Mass. Transf., vol. 122, pp. 1003–1013, Feb. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.058.
  • K. Mundra, T. Debroy, and K. M. Kelkar, “Numerical prediction of fluid flow and heat transfer in welding with a moving heat source,” Numer. Heat. Tr. A-Appl., vol. 29, no. 2, pp. 115–129, Oct. 1996. DOI: 10.1080/10407789608913782.
  • Z. Zhang, X. Zhao, W. Zhang, H. Chen, and D. Xie, “Equivalent heat source approach in a quasi-steady-state laser-GMAW hybrid welding simulation,” Numer. Heat. Tr. A-Appl., vol. 83, no. 3, pp. 285–303, Aug. 2023. DOI: 10.1080/10407782.2022.2091368.
  • C. Lv, G. Wang, H. Chen, and S. Wan, “Estimation of the moving heat source intensity using the multiple model adaptive inverse method,” Int. J. Therm. Sci., vol. 138, pp. 576–585, Jan. 2019. DOI: 10.1016/j.ijthermalsci.2019.01.018.
  • A. Khosravifard, M. R. Hematiyan, and N. Ghiasi, “A meshfree method with dynamic node reconfiguration for analysis of thermo-elastic problems with moving concentrated heat sources,” Appl. Math. Model, vol. 79, pp. 624–638, Oct. 2020. DOI: 10.1016/j.apm.2019.10.055.
  • M. Ghalambaz and J. Zhang, “Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam,” Int. J. Heat. Mass. Transf., vol. 146, pp. 118832, Oct. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118832.
  • M. Hussain and S. Haq, “Weighted meshless spectral method for the solutions of multi-term time fractional advection-diffusion problems arising in heat and mass transfer,” Int. J. Heat. Mass. Transf., vol. 129, pp. 1305–1316, Oct. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.039.
  • J. M. Granados, C. A. Bustamante, and W. F. Florez, “Extending meshless method of approximate particular solutions (MAPS) to two-dimensional convection heat transfer problems,” Appl. Math. Comput., vol. 390, pp. 125484, Sept. 2021. DOI: 10.1016/j.amc.2020.125484.
  • Y. Hong, J. Lin, A. H. D. Cheng, Y. Wang, and W. Chen, “Thermal analysis of heat transfer in pipe cooling concrete structure by a meshless RBF-FD method combined with an indirect model,” Int. J. Therm. Sci., vol. 152, pp. 106296, Feb. 2020. DOI: 10.1016/j.ijthermalsci.2020.106296.
  • A. Moarrefzadeh, S. Shahrooi, and M. Jalali Azizpour, “Predicting fatigue crack propagation in residual stress field due to welding by meshless local Petrov-Galerkin method,” J. Manuf. Process, vol. 45, pp. 379–391, Jul. 2019. DOI: 10.1016/j.jmapro.2019.07.019.
  • H. Sadat, C.-A. Wang, and V. Le Dez, “Meshless method for solving coupled radiative and conductive heat transfer in complex multi-dimensional geometries,” Appl. Math. Comput., vol. 218, no. 20, pp. 10211–10225, 2012. DOI: 10.1016/j.amc.2012.03.101.
  • T. Belytschko, Y. Y. Lu, and L. Gu, “Element free Galerkin methods,” Int. J. Numer. Meth. Eng., vol. 37, no. 2, pp. 229–256, 1994. DOI: 10.1002/nme.1620370205.
  • O. Champagne and X.-T. Pham, “Numerical simulation of moving heat source in arc welding using the element-free Galerkin method with experimental validation and numerical study,” Int. J. Heat. Mass. Transf., vol. 154, pp. 119633, Apr. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119633.
  • H. Yang and Y. He, “Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free Galerkin methods,” Int. Commun. Heat. Mass, vol. 37, no. 4, pp. 385–392, Jan. 2010. DOI: 10.1016/j.icheatmasstransfer.2009.12.002.
  • U. K. Sajja and S. D. Felicelli, “Element-free Galerkin method for thermosolutal convection and macrosegregation,” Int. J. Numer. Meth. Fl., vol. 64, pp. 733–760, Sept. 2009. DOI: 10.1002/fld.2169.
  • S. Singh and R. Bhargava, “Numerical simulation of a phase transition problem with natural convection using hybrid FEM/EFGM technique,” Int. J. Numer. Method. H., vol. 25, no. 3, pp. 570–592, 2015. DOI: 10.1108/HFF-06-2013-0201.
  • L. Cai, X. Wang, M. Yao, and Y. Liu, “Element-free Galerkin meshless method on solidification behavior inside continuous casting mold,” Metall. Mater. Trans. B, vol. 51, no. 3, pp. 1113–1126, Mar. 2020. DOI: 10.1007/s11663-020-01820-0.
  • J. C. Álvarez Hostos, B. Storti, B. A. Tourn, and V. D. Fachinotti, “Solving heat conduction problems with a moving heat source in arc welding processes via an overlapping nodes scheme based on the improved element-free Galerkin method,” Int. J. Heat. Mass. Transf., vol. 192, pp. 122940, Apr. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122940.
  • J.-P. Zhang, G.-Q. Zhou, S.-G. Gong, S.-S. Wang, and S. Hu, “Steady heat transfer analysis of orthotropic structure based on Element-Free Galerkin method,” Int. J. Therm. Sci., vol. 121, pp. 163–181, Jul. 2017. DOI: 10.1016/j.ijthermalsci.2017.06.024.
  • J. Zhang, G. Zhou, S. Gong, and S. Wang, “Transient heat transfer analysis of anisotropic material by using element-free Galerkin method,” Int. Commun. Heat. Mass, vol. 84, pp. 134–143, Apr. 2017. DOI: 10.1016/j.icheatmasstransfer.2017.04.003.
  • J. Zhang et al., “Transient heat transfer analysis of orthotropic materials considering phase change process based on element-free Galerkin method,” Int. Commun. Heat. Mass, vol. 125, pp. 105295, May 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105295.
  • S. Geng, P. Jiang, X. Shao, L. Guo, and X. Gao, “Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet,” J. Mater. Sci. Technol., vol. 46, pp. 50–63, Jan. 2020. DOI: 10.1016/j.jmst.2019.10.027.
  • L. F. Mei, J. H. Qin, and D. B. Yan, “Numerical and experimental study on temperature field of activated laser welding 304 stainless steel,” Laser Technol., vol. 44, no. 4, pp. 492–496, Jul. 2020. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.016.
  • L. X. Hu et al., “Numerical simulation and laser butt welding of Zr-Sn-Nb-Fe zirconium alloy sheets,” Chin. J. Lasers, vol. 43, no. 7, pp. 0702002, Jul. 2016. DOI: 10.3788/CJL201643.0702002.
  • M. Aslam and C. K. Sahoo, “Numerical and experimental investigation for the cladding of AISI 304 stainless steel on mild steel substrate using gas metal arc welding,” CIRP. J. Manuf. Sci. Technol., vol. 37, pp. 378–387, Mar. 2022. DOI: 10.1016/j.cirpj.2022.02.017.
  • A. Yadav, A. Ghosh, and A. Kumar, “Experimental and numerical study of thermal field and weld bead characteristics in submerged arc welded plate,” J. Mater. Process. Technol., vol. 248, pp. 262–274, May 2017. DOI: 10.1016/j.jmatprotec.2017.05.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.